

Laravel:	Up	and	Running
A	Framework	for	Building	Modern	PHP	Apps

Matt	Stauffer

Laravel:	Up	and	Running
by	Matt	Stauffer

Copyright	©	2017	Matt	Stauffer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online
editions	are	also	available	for	most	titles	(http://oreilly.com/safari).	For	more	information,
contact	our	corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editor:	Allyson	MacDonald

Production	Editor:	Colleen	Lobner

Copyeditor:	Rachel	Head

Proofreader:	Kim	Cofer

Indexer:	Angela	Howard

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

Illustrator:	Rebecca	Demarest

December	2016:	First	Edition

http://oreilly.com/safari

Revision	History	for	the	First	Edition
2016-11-14:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491936085	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Laravel:	Up	and
Running,	the	cover	image	of	a	gemsbok,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information
and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all
responsibility	for	errors	or	omissions,	including	without	limitation	responsibility	for
damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and
instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or	the
intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-93608-5

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491936085

Dedication
This	book	is	dedicated	to	my	gracious	and	inspiring	wife,	Tereva,	my	joyful	and	courageous
son,	Malachi,	and	my	beautiful	daughter,	Mia,	who	spent	the	majority	of	this	book’s	creation
in	her	mama’s	belly.

Preface

The	story	of	how	I	got	started	with	Laravel	is	a	common	one:	I	had	written	PHP	for	years,	but
I	was	on	my	way	out	the	door,	pursuing	the	power	of	Rails	and	other	modern	web
frameworks.	Rails	in	particular	had	a	lively	community,	a	perfect	combination	of	opinionated
defaults	and	flexibility,	and	the	power	of	Ruby	Gems	to	leverage	prepackaged	common	code.

Something	kept	me	from	jumping	ship,	and	I	was	glad	for	that	when	I	found	Laravel.	It
offered	everything	I	was	drawn	to	in	Rails,	but	it	wasn’t	just	a	Rails	clone;	this	was	an
innovative	framework	with	incredible	documentation,	a	welcoming	community,	and	clear
influences	from	many	languages	and	frameworks.

Since	that	day	I’ve	been	able	to	share	my	journey	of	learning	Laravel	through	blogging	and
speaking	at	conferences;	I’ve	written	dozens	of	apps	in	Laravel	for	side	and	work	projects,
and	I’ve	met	thousands	of	Laravel	developers	online	and	in	person.	I	have	plenty	of	tools	in
my	toolkit	at	our	consultancy,	but	I	am	honestly	happiest	when	I	sit	down	in	front	of	a
command	line	and	type	laravel	new	project.

What	This	Book	Is	About
This	is	not	the	first	book	about	Laravel,	and	it	won’t	be	the	last.	I	don’t	intend	for	this	to	be	a
book	that	covers	every	line	of	code	or	every	implementation	pattern.	I	don’t	want	this	to	be
the	sort	of	book	that	goes	out	of	date	when	a	new	version	of	Laravel	is	released.	Instead,	its
primary	purpose	is	to	provide	developers	with	a	high-level	overview	and	concrete	examples
to	learn	what	they	need	to	get	started,	as	quickly	as	possible.	Rather	than	mirroring	the	docs,	I
want	to	help	you	understand	the	foundational	concepts	behind	Laravel.

Laravel	is	a	powerful	and	flexible	PHP	framework.	It	has	a	thriving	community	and	a	wide
ecosystem	of	tools,	and	as	a	result	it’s	growing	in	appeal	and	reach.	This	book	is	for
developers	who	already	know	how	to	make	websites	and	applications	and	want	to	quickly
learn	how	to	do	so	in	Laravel.

Laravel’s	documentation	is	thorough	and	excellent.	If	you	find	that	I	don’t	cover	any
particular	topic	deeply	enough	for	your	liking,	I	encourage	you	to	visit	the	online
documentation	and	dig	deeper	into	that	particular	topic.

I	think	you	will	find	the	book	a	comfortable	balance	between	high-level	introduction	and
concrete	application,	and	by	the	end	you	should	feel	comfortable	writing	an	entire	application
in	Laravel,	from	scratch.	And,	if	I	did	my	job	well,	you’ll	be	excited	to	try.

http://laravel.com/docs

Who	This	Book	Is	For
This	book	assumes	knowledge	of	basic	object-oriented	programming	practices,	PHP	(or	at
least	the	general	syntax	of	C-family	languages),	and	the	basic	concepts	of	the	Model–View–
Controller	(MVC)	pattern	and	templating.	If	you’ve	never	made	a	website	before,	you	may
find	yourself	in	over	your	head.	But	as	long	as	you	have	some	programming	experience,	you
don’t	have	to	know	anything	about	Laravel	before	you	read	this	book	—	we’ll	cover
everything	you	need	to	know,	from	the	simplest	“Hello,	world!”

Laravel	can	run	on	any	operating	system,	but	there	will	be	some	Bash	(shell)	commands	in	the
book	that	are	easiest	to	run	on	Linux/Mac	OS.	Windows	users	may	have	a	harder	time	with
these	commands	and	with	modern	PHP	development,	but	if	you	follow	the	instructions	to	get
Homestead	(a	Linux	virtual	machine)	running,	you’ll	be	able	to	run	all	of	the	commands	from
there.

How	This	Book	Is	Structured
This	book	is	structured	in	what	I	imagine	to	be	a	chronological	order:	if	you’re	building	your
first	web	app	with	Laravel,	the	early	chapters	cover	the	foundational	components	you’ll	need
to	get	started,	and	the	later	chapters	cover	less	foundational	or	more	esoteric	features.

Each	section	of	the	book	can	be	read	on	its	own,	but	for	someone	new	to	the	framework,	I’ve
tried	to	structure	the	chapters	so	that	it’s	actually	very	reasonable	to	start	from	the	beginning
and	read	until	the	end.

Where	applicable,	each	chapter	will	end	with	two	sections:	“Testing”	and	“TL;DR.”	If	you’re
not	familiar,	TL;DR	means	“too	long;	didn’t	read.”	These	final	sections	will	show	you	how	to
write	tests	for	the	features	covered	in	each	chapter	and	give	a	high-level	overview	of	what
was	covered.

The	book	is	written	for	Laravel	5.3,	but	because	Laravel	5.1	is	the	latest	LTS	release,	any
features	that	are	new	in	5.2	or	5.3	will	be	identified.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by
context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

O’Reilly	Safari
NOTE

Safari	(formerly	Safari	Books	Online)	is	membership-based	training	and	reference	platform
for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,	interactive
tutorials,	and	curated	playlists	from	over	250	publishers,	including	O’Reilly	Media,	Harvard
Business	Review,	Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,
Sams,	Que,	Peachpit	Press,	Adobe,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,
Morgan	Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New
Riders,	McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/laravel-up-and-running.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/laravel-up-and-running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This	book	would	not	have	happened	without	the	gracious	support	of	my	amazing	wife	Tereva
or	the	understanding	(“Daddy’s	writing,	buddy!”)	of	my	son	Malachi.	And	while	she	wasn’t
explicitly	aware	of	it,	my	daughter	Mia	was	around	for	almost	the	entire	creation	of	the	book,
so	this	book	is	dedicated	to	the	whole	family.	There	were	many,	many	long	evening	hours	and
weekend	Starbucks	trips	that	took	me	away	from	my	family,	and	I	couldn’t	be	more	grateful
for	their	support	and	also	their	presence	just	making	my	life	awesome.

Additionally,	the	entire	Tighten	Co.	family	has	supported	and	encouraged	me	through	the
writing	of	the	book,	several	even	editing	(Keith	Damiani,	editor	extraordinaire)	and	helping
me	with	challenging	code	samples	(Adam	Wathan,	King	of	the	Collection	Pipeline).	Dan
Sheetz,	my	partner	in	Tighten	crime,	has	been	gracious	enough	to	watch	me	while	away	many
a	work	hour	cranking	on	this	book	and	was	nothing	but	supportive	and	encouraging;	and
Dave	Hicking,	our	operations	manager,	helped	me	arrange	my	schedule	and	work
responsibilities	around	writing	time.

Taylor	Otwell	deserves	thanks	and	honor	for	creating	Laravel	—	and	therefore	creating	so
many	jobs	and	helping	so	many	developers	love	our	lives	that	much	more.	He	deserves
appreciation	for	how	he’s	focused	on	developer	happiness	and	how	hard	he’s	worked	to	have
empathy	for	developers	and	to	build	a	positive	and	encouraging	community.	But	I	also	want	to
thank	him	for	being	a	kind,	encouraging,	and	challenging	friend.	Taylor,	you’re	a	boss.

Thanks	to	Jeffrey	Way,	who	I	still	contend	to	be	one	of	the	best	teachers	on	the	Internet.	He
originally	introduced	me	to	Laravel	and	still	introduces	more	people	every	day.	He’s	also,
unsurprisingly,	a	fantastic	human	being	whom	I’m	glad	to	call	a	friend.

Thank	you	to	Jess	D’Amico,	Shawn	McCool,	Ian	Landsman,	and	Taylor	for	seeing	value	in
me	as	a	conference	speaker	early	on	and	giving	me	a	platform	to	teach	from.	Thanks	to	Dayle
Rees	for	making	it	so	easy	for	so	many	to	learn	Laravel	in	the	early	days.

Thanks	to	every	person	who	put	their	time	and	effort	into	writing	blog	posts	about	Laravel,
especially	early	on:	Eric	Barnes,	Chris	Fidao,	Matt	Machuga,	Jason	Lewis,	Ryan	Tablada,
Dries	Vints,	Maks	Surguy,	and	so	many	more.

And	thanks	to	the	entire	community	of	friends	on	Twitter,	IRC,	and	Slack	who’ve	interacted
with	me	over	the	years.	I	wish	I	could	name	every	name,	but	I	would	miss	some	and	then	feel
awful	about	missing	them.	You	all	are	brilliant,	and	I’m	honored	to	get	to	interact	with	you	on
a	regular	basis.

Thanks	to	my	O’Reilly	editor,	Ally	MacDonald,	and	all	of	my	technical	editors:	Keith
Damiani,	Michael	Dyrynda,	Adam	Fairholm,	and	Myles	Hyson.

And,	of	course,	thanks	to	the	rest	of	my	family	and	friends,	who	supported	me	directly	or
indirectly	through	this	process	—	my	parents	and	siblings,	the	Gainesville	community,	other
business	owners	and	authors,	other	conference	speakers,	and	the	inimitable	DCB.	I	need	to

stop	writing	because	by	the	time	I	run	out	of	space	here	I’ll	be	thanking	my	Starbucks	baristas.

Chapter	1.	Why	Laravel?

In	the	early	days	of	the	dynamic	web,	writing	a	web	application	looked	a	lot	different	than	it
does	today.	Developers	then	were	responsible	for	writing	the	code	for	not	just	the	unique
business	logic	of	our	applications,	but	also	each	of	the	components	that	are	so	common
across	sites	—	user	authentication,	input	validation,	database	access,	templating,	and	more.

Today,	programmers	have	dozens	of	application	development	frameworks	and	thousands	of
components	and	libraries	easily	accessible.	It’s	a	common	refrain	among	programmers	that,
by	the	time	you	learn	one	framework,	three	newer	(and	purportedly	better)	frameworks	have
popped	up	intending	to	replace	it.

“Just	because	it’s	there”	might	be	a	valid	justification	for	climbing	a	mountain,	but	there	are
better	reasons	to	choose	to	use	a	specific	framework	—	or	to	use	a	framework	at	all.	It’s
worth	asking	the	question:	why	frameworks?	More	specifically,	why	Laravel?

Why	Use	a	Framework?
It’s	easy	to	see	why	it’s	beneficial	to	use	the	individual	components,	or	packages,	that	are
available	to	PHP	developers.	With	packages,	someone	else	is	responsible	for	developing	and
maintaining	an	isolated	piece	of	code	that	has	a	well-defined	job,	and	in	theory	that	person	has
a	deeper	understanding	of	this	single	component	than	you	have	time	to	have.

Frameworks	like	Laravel	—	and	Symfony,	Silex,	Lumen,	and	Slim	—	prepackage	a
collection	of	third-party	components	together	with	custom	framework	“glue”	like
configuration	files,	service	providers,	prescribed	directory	structures,	and	application
bootstraps.	So,	the	benefit	of	using	a	framework	in	general	is	that	someone	has	made
decisions	not	just	about	individual	components	for	you,	but	also	about	how	those	components
should	fit	together.

“I’ll	Just	Build	It	Myself”
Let’s	say	you	start	a	new	web	app	without	the	benefit	of	a	framework.	Where	do	you	begin?
Well,	it	should	probably	route	HTTP	requests,	so	you	now	need	to	evaluate	all	of	the	HTTP
request	and	response	libraries	available	and	pick	one.	Then	a	router.	Oh,	and	you’ll	probably
need	to	set	up	some	form	of	routes	configuration	file.	What	syntax	should	it	use?	Where
should	it	go?	What	about	controllers?	Where	do	they	live,	and	how	are	they	loaded?	Well,
you	probably	need	a	dependency	injection	container	to	resolve	the	controllers	and	their
dependencies.	But	which	one?

Furthermore,	what	if	you	do	take	the	time	to	answer	all	those	questions	and	successfully
create	your	application	—	what’s	the	impact	on	the	next	developer?	What	about	when	you
have	four	such	custom-framework–based	applications,	or	a	dozen,	and	you	have	to	remember
where	the	controllers	live	in	each,	or	what	the	routing	syntax	is?

Consistency	and	Flexibility
Frameworks	address	this	issue	by	providing	a	carefully	considered	answer	to	the	question
“Which	component	should	we	use	here?”	and	ensuring	that	the	particular	components	chosen
work	well	together.	Additionally,	frameworks	provide	conventions	that	reduce	the	amount	of
code	a	developer	new	to	the	project	has	to	understand	—	if	you	understand	how	routing
works	in	one	Laravel	project,	for	example,	you	understand	how	it	works	in	all	Laravel
projects.

When	someone	prescribes	rolling	your	own	framework	for	each	new	project,	what	they’re
really	advocating	is	the	ability	to	control	what	does	and	doesn’t	go	into	your	application’s
foundation.	That	means	the	best	frameworks	will	not	only	provide	you	with	a	solid
foundation,	but	also	give	you	the	freedom	to	customize	to	your	heart’s	content.	And	this,	as
I’ll	show	you	in	the	rest	of	this	book,	is	part	of	what	makes	Laravel	so	special.

A	Short	History	of	Web	and	PHP	Frameworks
An	important	part	of	being	able	to	answer	the	question	“Why	Laravel?”	is	understanding
Laravel’s	history	—	and	understanding	what	came	before	it.	Prior	to	Laravel’s	rise	in
popularity,	there	were	a	variety	of	frameworks	and	other	movements	in	PHP	and	other	web
development	spaces.

Ruby	on	Rails
David	Heinemeier	Hansson	released	the	first	version	of	Ruby	on	Rails	in	2004,	and	it’s	been
hard	to	find	a	web	application	framework	since	then	that	hasn’t	been	influenced	by	Rails	in
some	way.

Rails	popularized	MVC,	RESTful	JSON	APIs,	convention	over	configuration,	ActiveRecord,
and	many	more	tools	and	conventions	that	had	a	profound	influence	on	the	way	web
developers	approached	their	applications	—	especially	with	regard	to	rapid	application
development.

The	Influx	of	PHP	Frameworks
It	was	clear	to	most	developers	that	Rails,	and	similar	web	application	frameworks,	were	the
wave	of	the	future,	and	PHP	frameworks,	including	those	admittedly	imitating	Rails,	starting
popping	up	quickly.

CakePHP	was	the	first	in	2005,	and	it	was	soon	followed	by	Symfony,	CodeIgniter,	Zend
Framework,	and	Kohana	(a	CodeIgniter	fork).	Yii	arrived	in	2008,	and	Aura	and	Slim	in
2010.	2011	brought	FuelPHP	and	Laravel,	both	of	which	were	not	quite	CodeIgniter	offshoots,
but	instead	proposed	as	alternatives.

Some	of	these	frameworks	were	more	Rails-y,	focusing	on	database	object-relational
mappers	(ORMs),	MVC	structures,	and	other	tools	targeting	rapid	development.	Others,	like
Symfony	and	Zend,	focused	more	on	enterprise	design	patterns	and	ecommerce.

The	Good	and	the	Bad	of	CodeIgniter
CakePHP	and	CodeIgniter	were	the	two	early	PHP	frameworks	that	were	most	open	about
how	much	their	inspiration	was	drawn	from	Rails.	CodeIgniter	quickly	rose	to	fame	and	by
2010	was	arguably	the	most	popular	of	the	independent	PHP	frameworks.

CodeIgniter	was	simple,	easy	to	use,	and	boasted	amazing	documentation	and	a	strong
community.	But	its	use	of	modern	technology	and	patterns	advanced	slowly,	and	as	the
framework	world	grew	and	PHP’s	tooling	advanced,	CodeIgniter	started	falling	behind	in
terms	of	both	technological	advances	and	out-of-the-box	features.	Unlike	many	other
frameworks,	CodeIgniter	was	managed	by	a	company,	and	they	were	slow	to	catch	up	with
PHP	5.3’s	newer	features	like	namespaces	and	the	moves	to	GitHub	and	later	Composer.	It	was
in	2010	that	Taylor	Otwell,	Laravel’s	creator,	became	dissatisfied	enough	with	CodeIgniter
that	he	set	off	to	write	his	own	framework.

Laravel	1,	2,	and	3
The	first	beta	of	Laravel	1	was	released	in	June	2011,	and	it	was	written	completely	from
scratch.	It	featured	a	custom	ORM	(Eloquent);	closure-based	routing	(inspired	by	Ruby
Sinatra);	a	module	system	for	extension;	and	helpers	for	forms,	validation,	authentication,
and	more.

Early	Laravel	development	moved	quickly,	and	Laravel	2	and	3	were	released	in	November
2011	and	February	2012,	respectively.	They	introduced	controllers,	unit	testing,	a	command-
line	tool,	an	inversion	of	control	(IoC)	container,	Eloquent	relationships,	and	migrations.

Laravel	4
With	Laravel	4,	Taylor	rewrote	the	entire	framework	from	the	ground	up.	By	this	point
Composer,	PHP’s	now-ubiquitous	package	manager,	was	showing	signs	of	becoming	an
industry	standard	and	Taylor	saw	the	value	of	rewriting	the	framework	as	a	collection	of
components,	distributed	and	bundled	together	by	Composer.

Taylor	developed	a	set	of	components	under	the	code	name	Illuminate	and,	in	May	2013,
released	Laravel	4	with	an	entirely	new	structure.	Instead	of	bundling	the	majority	of	its	code
as	a	download,	Laravel	now	pulled	in	the	majority	of	its	components	from	Symfony	(another
framework	that	released	its	components	for	use	by	others)	and	the	Illuminate	components
through	Composer.

Laravel	4	also	introduced	queues,	a	mail	component,	facades,	and	database	seeding.	And
because	Laravel	was	now	relying	on	Symfony	components,	it	was	announced	that	Laravel
would	be	mirroring	(not	exactly,	but	soon	after)	the	six-monthly	release	schedule	Symfony
follows.

Laravel	5
Laravel	4.3	was	scheduled	to	release	in	November	2014,	but	as	development	progressed,	it
became	clear	that	the	significance	of	its	changes	merited	a	major	release,	and	Laravel	5	was
released	in	February	2015.

Laravel	5	featured	a	revamped	directory	structure,	removal	of	the	form	and	HTML	helpers,
the	introduction	of	the	contract	interfaces,	a	spate	of	new	views,	Socialite	for	social	media
authentication,	Elixir	for	asset	compilation,	Scheduler	to	simplify	cron,	dotenv	for	simplified
environment	management,	form	requests,	and	a	brand	new	REPL	(read–evaluate–print	loop).

What’s	So	Special	About	Laravel?
So	what	is	it	that	sets	Laravel	apart?	Why	is	it	worth	having	more	than	one	PHP	framework	at
any	time?	They	all	use	components	from	Symfony	anyway,	right?	Let’s	talk	a	bit	about	what
makes	Laravel	“tick.”

The	Philosophy	of	Laravel
You	only	need	to	read	through	the	Laravel	marketing	materials	and	READMEs	to	start	seeing
its	values.	Taylor	uses	light-related	words	like	“Illuminate”	and	“Spark.”	And	then	there	are
these:	“Artisans.”	“Elegant.”	Also,	these:	“Breath	of	fresh	air.”	“Fresh	start.”	And	finally:
“Rapid.”	“Warp	speed.”

The	two	most	strongly	communicated	values	of	the	framework	are	to	increase	developer
speed	and	developer	happiness.	Taylor	has	described	the	“Artisan”	language	as	intentionally
contrasting	against	more	utilitarian	values.	You	can	see	the	genesis	of	this	sort	of	thinking	in
his	2011	question	on	StackExchange	in	which	he	stated,	“Sometimes	I	spend	ridiculous
amounts	of	time	(hours)	agonizing	over	making	code	look	pretty”	—	just	for	the	sake	of	a
better	experience	of	looking	at	the	code	itself.	And	he’s	often	talked	about	the	value	of	making
it	easier	and	quicker	for	developers	to	take	their	ideas	to	fruition,	getting	rid	of	unnecessary
barriers	to	creating	great	products.

Laravel	is,	at	its	core,	about	equipping	and	enabling	developers.	Its	goal	is	to	provide	clear,
simple,	and	beautiful	code	and	features	that	help	developers	quickly	learn,	start,	and	develop,
and	write	code	that’s	simple,	clear,	and	will	last.

The	concept	of	targeting	developers	is	clear	across	Laravel	materials.	“Happy	developers
make	the	best	code”	is	written	in	the	documentation.	“Developer	happiness	from	download	to
deploy”	was	the	unofficial	slogan	for	a	while.	Of	course,	any	tool	or	framework	will	say	it
wants	developers	to	be	happy.	But	having	developer	happiness	as	a	primary	concern,	rather
than	secondary,	has	had	a	huge	impact	on	Laravel’s	style	and	decision-making	progress.
Where	other	frameworks	may	target	architectural	purity	as	their	primary	goal,	or
compatibility	with	the	goals	and	values	of	enterprise	development	teams,	Laravel’s	primary
focus	is	on	serving	the	individual	developer.

http://bit.ly/2dT5kmS

How	Laravel	Achieves	Developer	Happiness
Just	saying	you	want	to	make	developers	happy	is	one	thing.	Doing	it	is	another,	and	it
requires	you	to	question	what	in	a	framework	is	most	likely	to	make	developers	unhappy	and
what	is	most	likely	to	make	them	happy.	There	are	a	few	ways	Laravel	tries	to	make
developers’	lives	easier.

First,	Laravel	is	a	rapid	application	development	framework.	That	means	it	focuses	on	a
shallow	(easy)	learning	curve	and	on	minimizing	the	steps	between	starting	a	new	app	and
publishing	it.	All	of	the	most	common	tasks	in	building	web	applications,	from	database
interactions	to	authentication	to	queues	to	email	to	caching,	are	made	simpler	by	the
components	Laravel	provides.	But	Laravel’s	components	aren’t	just	great	on	their	own;	they
provide	a	consistent	API	and	predictable	structures	across	the	entire	framework.	That	means
that,	when	you’re	trying	something	new	in	Laravel,	you’re	more	than	likely	going	to	end	up
saying,	“…	and	it	just	works.”

This	doesn’t	end	at	the	framework	itself,	either.	Laravel	provides	an	entire	ecosystem	of	tools
for	building	and	launching	applications.	You	have	Homestead	and	Valet	for	local
development,	Forge	for	server	management,	and	Envoyer	for	advanced	deployment.	And
there’s	a	suite	of	add-on	packages:	Cashier	for	payments	and	subscriptions,	Echo	for
WebSockets,	Scout	for	search,	Passport	for	API	authentication,	Socialite	for	social	login,	and
Spark	to	bootstrap	your	SaaS.	Laravel	is	trying	to	take	the	repetitive	work	out	of	developers’
jobs	so	they	can	do	something	unique.

Next,	Laravel	focuses	on	“convention	over	configuration”	—	meaning	that	if	you’re	willing
to	use	Laravel’s	defaults,	you’ll	have	to	do	much	less	work	than	with	other	frameworks	that
require	you	to	declare	all	of	your	settings	even	if	you’re	using	the	recommended
configuration.	Projects	built	on	Laravel	take	less	time	than	those	built	on	most	other	PHP
frameworks.

Laravel	also	focuses	deeply	on	simplicity.	It’s	possible	to	use	dependency	injection	and
mocking	and	the	Data	Mapper	pattern	and	repositories	and	Command	Query	Responsibility
Segregation	and	all	sorts	of	other	more	complex	architectural	patterns	with	Laravel,	if	you
want.	But	while	other	frameworks	might	suggest	using	those	tools	and	structures	on	every
project,	Laravel	and	its	documentation	and	community	lean	toward	starting	with	the	simplest
possible	implementation	—	a	global	function	here,	a	facade	there,	ActiveRecord	over	there.
This	allows	developers	to	create	the	simplest	possible	application	to	solve	for	their	needs.

An	interesting	source	of	how	Laravel	is	different	is	that	its	creator	and	its	community	are
more	connected	to	and	inspired	by	Ruby	and	Rails	and	functional	programming	languages
than	by	Java.	There’s	a	strong	current	in	modern	PHP	to	lean	toward	verbosity	and
complexity,	embracing	the	more	Java-esque	aspects	of	PHP.	But	Laravel	tends	to	be	on	the
other	side,	embracing	expressive,	dynamic,	and	simple	coding	practices	and	language
features.

The	Laravel	Community
If	this	book	is	your	first	exposure	to	the	Laravel	community,	you	have	something	special	to
look	forward	to.	One	of	the	distinguishing	elements	of	Laravel,	which	has	contributed	to	its
growth	and	success,	is	the	welcoming,	teaching	community	that	surrounds	it.	From	Jeffrey
Way’s	Laracasts	video	tutorials	to	Laravel	News	to	Slack	and	IRC	channels,	from	Twitter
friends	to	bloggers	to	the	Laracon	conferences,	Laravel	has	a	rich	and	vibrant	community	full
of	folks	who’ve	been	around	since	day	one	and	folks	who	are	on	their	own	day	one.	And	this
isn’t	an	accident:

From	the	very	beginning	of	Laravel,	I’ve	had	this	idea	that	all	people	want	to	feel	like	they
are	part	of	something.	It’s	a	natural	human	instinct	to	want	to	belong	and	be	accepted	into	a
group	of	other	like-minded	people.	So,	by	injecting	personality	into	a	web	framework	and
being	really	active	with	the	community,	that	type	of	feeling	can	grow	in	the	community.
Taylor	Otwell,	Product	and	Support	interview

Taylor	understood	from	the	early	days	of	Laravel	that	a	successful	open	source	project
needed	two	things:	good	documentation	and	a	welcoming	community.	And	those	two	things
are	now	hallmarks	of	Laravel.

https://laracasts.com/
https://laravel-news.com/

How	It	Works
Up	until	now,	everything	I’ve	shared	here	has	been	entirely	abstract.	What	about	the	code,	you
ask?	Let’s	dig	into	a	simple	application	(Example	1-1)	so	you	can	see	what	working	with
Laravel	day-to-day	is	actually	like.

Example	1-1.	“Hello,	World”	in	routes/web.php
//	File:	routes/web.php

<?php

Route::get('/',	function()	{

			return	'Hello,	World!';

});

The	simplest	possible	action	you	can	take	in	a	Laravel	application	is	to	define	a	route	and
return	a	result	any	time	someone	visits	that	route.	If	you	initialize	a	brand	new	Laravel
application	on	your	machine,	define	the	route	in	Example	1-1,	and	then	serve	the	site	from	the
public	directory,	you’ll	have	a	fully	functioning	“Hello,	World”	example	(see	Figure	1-1).

Figure	1-1.	Returning	“Hello,	World!”	with	Laravel

It	looks	very	similar	to	do	the	same	with	controllers,	as	you	can	see	in	Example	1-2.

Example	1-2.	“Hello,	World”	with	controllers
//	File:	routes/web.php

<?php

Route::get('/',	'WelcomeController@index');

//	File:	app/Http/Controllers/WelcomeController.php

<?php

namespace	app\Http\Controllers;

class	WelcomeController

{

				public	function	index()

				{

								return	'Hello,	World!';

				}

}

And	if	we’re	storing	our	greetings	in	the	database,	it’ll	also	look	pretty	similar	(see
Example	1-3).

Example	1-3.	Multigreeting	“Hello,	World”	with	database	access
//	File:	routes/web.php

<?php

Route::get('/',	function()	{

				return	Greeting::first()->body;

});

//	File:	app/Greeting.php

<?php

use	Illuminate\Database\Eloquent\Model;

class	Greeting	extends	Model	{}

//	File:	database/migrations/2015_07_19_010000_create_greetings_table.php

<?php

use	Illuminate\Database\Migrations\Migration;

use	Illuminate\Database\Schema\Blueprint;

class	CreateGreetingsTable	extends	Migration

{

				public	function	up()

				{

								Schema::create('greetings',	function	(Blueprint	$table)	{

												$table->increments('id');

												$table->string('body');

												$table->timestamps();

								});

				}

				public	function	down()

				{

								Schema::drop('greetings');

				}

}

Example	1-3	might	be	a	bit	overwhelming,	and	if	so,	just	skip	over	it.	We’ll	learn	about
everything	that’s	happening	here	in	later	chapters,	but	you	can	already	see	that	with	just	a	few
lines	of	code,	we’ve	set	up	database	migrations	and	models	and	pulled	records	out.	It’s	just
that	simple.

Why	Laravel?
So	—	why	Laravel?

Because	Laravel	helps	you	bring	your	ideas	to	reality	with	no	wasted	code,	using	modern
coding	standards,	surrounded	by	a	vibrant	community,	with	an	empowering	ecosystem	of
tools.

And	because	you,	dear	developer,	deserve	to	be	happy.

Chapter	2.	Setting	Up	a	Laravel
Development	Environment

Part	of	PHP’s	success	has	been	because	it’s	hard	to	find	a	web	server	that	can’t	serve	PHP.
However,	modern	PHP	tools	have	stricter	requirements	than	those	of	the	past.	The	best	way	to
develop	for	Laravel	is	to	ensure	a	consistent	local	and	remote	server	environment	for	your
code,	and	thankfully,	the	Laravel	ecosystem	has	a	few	tools	for	this.

System	Requirements
Everything	we’ll	cover	in	this	chapter	is	possible	with	Windows	machines,	but	you’ll	need
dozens	of	pages	of	custom	instructions	and	caveats.	I’ll	leave	those	instructions	and	caveats	to
actual	Windows	users,	so	the	examples	here	and	in	the	rest	of	the	book	will	focus	on
Unix/Linux/Mac	OS	developers.

Whether	you	choose	to	serve	your	website	by	installing	PHP	and	other	tools	on	your	local
machine,	serve	your	development	environment	from	a	virtual	machine	via	Vagrant,	or	rely	on
a	tool	like	MAMP/WAMP/XAMPP,	your	development	environment	will	need	to	have	all	of
the	following	installed	in	order	to	serve	Laravel	sites:

PHP	>=	5.6.4	for	Laravel	5.3	or	PHP	>=	5.5.9	for	5.1	and	5.2

OpenSSL	PHP	extension

PDO	PHP	extension

Mbstring	PHP	extension

Tokenizer	PHP	extension

Composer
Whatever	machine	you’re	developing	on	will	need	to	have	Composer	installed	globally.	If
you’re	not	familiar	with	Composer,	it’s	a	tool	that’s	at	the	foundation	of	most	modern	PHP
development.	Composer	is	a	dependency	manager	for	PHP,	much	like	NPM	for	Node	or
RubyGems	for	Ruby.	You’ll	need	Composer	to	install	Laravel,	update	Laravel,	and	bring	in
external	dependencies.

https://getcomposer.org/

Local	Development	Environments
For	many	projects,	hosting	your	development	environment	using	a	simpler	tool	set	will	be
enough.	If	you	already	have	MAMP	or	WAMP	or	XAMPP	installed	on	your	system,	that	will
likely	be	fine	to	run	Laravel.	You	can	also	just	run	Laravel	with	PHP’s	built-in	web	server,
assuming	your	system	PHP	is	the	right	version.

All	you	really	need	to	get	started	is	the	ability	to	run	PHP.	Everything	past	that	is	up	to	you.

However,	Laravel	offers	two	tools	for	local	development,	Valet	and	Homestead,	and	we’ll
cover	both	briefly.	If	you’re	unsure	of	which	to	use,	I’d	recommend	using	Valet	and	just
skimming	the	Homestead	section;	however,	both	tools	are	valuable	and	worth	understanding.

Laravel	Valet
If	you	want	to	use	PHP’s	built-in	web	server,	your	simplest	option	is	to	serve	every	site	from
a	localhost	URL.	If	you	run	php	-S	localhost:8000	-t	public	from	your	Laravel	site’s
root	folder,	PHP’s	built-in	web	server	will	serve	your	site	at	http://localhost:8000/.	You	can
also	run	php	artisan	serve	once	you	have	your	application	set	up	to	easily	spin	up	an
equivalent	server.

But	if	you’re	interested	in	tying	each	of	your	sites	to	a	specific	development	domain,	you’ll
need	to	get	comfortable	with	your	operating	system’s	hosts	file	and	use	a	tool	like	dnsmasq.
Let’s	instead	try	something	simpler.

If	you’re	a	Mac	user	(there	are	also	unofficial	forks	for	Windows	and	Linux),	Laravel	Valet
takes	away	the	need	to	connect	your	domains	to	your	application	folders.	Valet	installs
dnsmasq	and	a	series	of	PHP	scripts	that	make	it	possible	to	type	laravel	new	myapp	&&
open	myapp.dev	and	for	it	to	just	work.	You’ll	need	to	install	a	few	tools	using	Homebrew,
which	the	documentation	will	walk	you	through,	but	the	steps	from	initial	installation	to
serving	your	apps	are	few	and	simple.

Install	Valet	(see	the	docs	for	the	latest	installation	instruction	—	it’s	under	very	active
development	at	this	time	of	writing),	and	point	it	at	one	or	more	directories	where	your	sites
will	live.	I	ran	valet	park	from	my	~/Sites	directory,	which	is	where	I	put	all	of	my	under-
development	apps.	Now,	you	can	just	add	.dev	to	the	end	of	the	directory	name	and	visit	it	in
your	browser.

Valet	makes	it	easy	to	serve	all	folders	in	a	given	folder	as	“FOLDERNAME.dev”	using	valet
park,	to	serve	just	a	single	folder	using	valet	link,	to	open	the	Valet-served	domain	for	a
folder	using	valet	open,	to	serve	the	Valet	site	with	HTTPS	using	valet	secure,	and	to	open
an	ngrok	tunnel	so	you	can	share	your	site	with	others	with	valet	share.

http://bit.ly/2eNPJ5T
https://laravel.com/docs/valet
https://laravel.com/docs/valet

Laravel	Homestead
Homestead	is	another	tool	you	might	want	to	use	to	set	up	your	local	development
environment.	It’s	a	configuration	tool	that	sits	on	top	of	Vagrant	and	provides	a	pre-
configured	virtual	machine	image	that	is	perfectly	set	up	for	Laravel	development,	and
mirrors	the	most	common	production	environment	that	many	Laravel	sites	run	on.

Setting	up	Homestead
If	you	choose	to	use	Homestead,	it’s	going	to	take	a	bit	more	work	to	set	up	than	something
like	MAMP	or	Valet.	The	benefits	are	myriad,	however:	configured	correctly,	your	local
environment	can	be	incredibly	close	to	your	remote	working	environment;	you	won’t	have	to
worry	about	updating	your	dependencies	on	your	local	machine;	and	you	can	learn	all	about
the	structure	of	Ubuntu	servers	from	the	safety	of	your	local	machine.

WHAT	TOOLS	DO	HOMESTEAD	OFFER?

You	can	always	upgrade	the	individual	components	of	your	Homestead	virtual	machine,	but	here	are	a	few	important
tools	Homestead	comes	with	by	default:

To	run	the	server	and	serve	the	site,	Ubuntu,	PHP,	and	Nginx	(a	web	server	similar	to	Apache).

For	database/storage	and	queues,	MySQL,	Postgres,	Redis,	Memcached,	and	beanstalkd.

For	build	steps	and	other	tools,	Node.

Installing	Homestead’s	dependencies
First,	you’ll	need	to	download	and	install	either	VirtualBox	or	VMWare.	VirtualBox	is	most
common	because	it’s	free.

Next,	download	and	install	Vagrant.

Vagrant	is	convenient	because	it	makes	it	easy	for	you	to	create	a	new	local	virtual	machine
from	a	precreated	“box,”	which	is	essentially	a	template	for	a	virtual	machine.	So,	the	next
step	is	to	run	vagrant	box	add	laravel/homestead	from	your	terminal	to	download	the	box.

Installing	Homestead
Next,	let’s	actually	install	Homestead.	You	can	install	multiple	instances	of	Homestead
(perhaps	hosting	a	different	Homestead	box	per	project),	but	I	prefer	a	single	Homestead
virtual	machine	for	all	of	my	projects.	If	you	want	one	per	project,	you’ll	want	to	install
Homestead	in	your	project	directory;	check	the	Homestead	documentation	online	for
instructions.	If	you	want	a	single	virtual	machine	for	all	of	your	projects,	install	Homestead	in
your	user ’s	home	directory	using	the	following	command:

git	clone	https://github.com/laravel/homestead.git	~/Homestead

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://laravel.com/docs/5.3/homestead

Now,	run	the	initialization	script	from	wherever	you	put	the	Homestead	directory:

bash	~/Homestead/init.sh

This	will	place	Homestead’s	primary	configuration	file,	Homestead.yaml,	in	a	new
~/.homestead	directory.

Configuring	Homestead
Open	up	Homestead.yaml	and	configure	it	how	you’d	like.	Here’s	what	it	looks	like	out	of	the
box:

ip:	"192.168.10.10"

memory:	2048

cpus:	1

provider:	virtualbox

authorize:	~/.ssh/id_rsa.pub

keys:

				-	~/.ssh/id_rsa

folders:

				-	map:	~/Code

						to:	/home/vagrant/Code

sites:

				-	map:	homestead.app

						to:	/home/vagrant/Code/Laravel/public

databases:

				-	homestead

#	blackfire:

#					-	id:	foo

#							token:	bar

#							client-id:	foo

#							client-token:	bar

#	ports:

#					-	send:	50000

#							to:	5000

#					-	send:	7777

#							to:	777

#							protocol:	udp

You’ll	need	to	tell	it	your	provider	(likely	virtualbox),	point	it	to	your	public	SSH	key	(by
default	~/.ssh/id_rsa.pub;	if	you	don’t	have	one,	GitHub	has	a	great	tutorial	on	creating
SSH	keys),	map	folders	and	sites	to	their	local	machine	equivalents,	and	provision	a	database.

Mapping	folders	in	Homestead	allows	you	to	edit	files	on	your	local	machine	and	have	those
files	show	up	in	your	Vagrant	box	so	they	can	be	served.	For	example,	if	you	have	a	~/Sites
directory	where	you	put	all	of	your	code,	you’d	map	the	folders	in	Homestead	by	replacing
the	folders	section	in	Homestead.yaml	with	the	following:

folders:

				-	map:	~/Sites

						to:	/home/vagrant/Sites

http://bit.ly/2e7Auof

You’ve	now	just	created	a	directory	in	your	Homestead	virtual	machine	at
/home/vagrant/Sites	that	will	mirror	your	computer ’s	directory	at	~/Sites.

TOP-LEVEL	DOMAINS	FOR	DEVELOPMENT	SITES
You	can	choose	any	convention	for	local	development	sites’	URLs,	but	.app	and	.dev	are	the	most	common.
Homestead	suggests	.app,	so	if	I’m	working	on	a	local	copy	of	symposiumapp.com,	I’ll	develop	at
symposiumapp.app.

Now,	let’s	set	up	our	first	example	website.	Let’s	say	our	live	site	is	going	to	be
projectName.com.	In	Homestead.yaml,	we’ll	map	our	local	development	folder	to
projectName.app,	so	we	have	a	separate	URL	to	visit	for	local	development:

sites:

				-	map:	projectName.app

						to:	/home/vagrant/Sites/projectName/public

As	you	can	see,	we’re	mapping	the	URL	projectName.app	to	the	virtual	machine	directory
/home/vagrant/Sites/projectName/public,	which	is	the	public	folder	within	our	Laravel	install.
We’ll	learn	more	about	that	later.

Finally,	you’re	going	to	need	to	teach	your	local	machine	that,	when	you	try	to	visit
projectName.app,	it	should	look	at	your	computer ’s	local	IP	address	to	resolve	it.	Mac	and
Linux	users	should	edit	/etc/hosts,	and	Windows	users
C:\Windows\System32\drivers\etc\hosts.	Add	a	line	to	this	file	that	looks	like	this:

192.168.10.10		projectName.app

Once	you’ve	provisioned	Homestead,	your	site	will	be	available	to	browse	(on	your	machine)
at	http://projectName.app/.

Creating	databases	in	Homestead
Just	like	you	can	define	a	site	in	Homestead.yaml,	you	can	also	define	a	database.	Databases
are	a	lot	simpler,	because	you’re	only	telling	the	provisioner	to	create	a	database	with	that
name,	nothing	else.	We	do	this	as	follows:

databases:

				-	projectname

Provisioning	Homestead
The	first	time	you	actually	turn	on	a	Homestead	box,	you	need	to	tell	Vagrant	to	initialize	it.
Navigate	to	your	Homestead	directory	and	run	vagrant	up:

cd	~/Homestead

vagrant	up

Your	Homestead	box	is	now	up	and	running;	it’s	mirroring	a	local	folder,	and	it’s	serving	it
to	a	URL	you	can	visit	in	any	browser	on	your	computer.	It	also	has	created	a	MySQL

http://projectName.app/

database.	Now	that	you	have	that	environment	running,	you’re	ready	to	set	up	your	first
Laravel	project	—	but	first,	a	quick	note	about	using	Homestead	day-to-day.

Using	Homestead	day-to-day
It’s	common	to	leave	your	Homestead	virtual	machine	up	and	running	at	all	times,	but	if	you
don’t,	or	if	you	have	recently	restarted	your	computer,	you’ll	need	to	know	how	to	spin	the
box	up	and	down.

Since	Homestead	is	based	on	Vagrant	commands,	you’ll	just	use	basic	Vagrant	commands	for
most	Homestead	actions.	Change	to	the	directory	where	you	installed	Homestead	(using	cd)
and	then	run	the	following	commands	as	needed:

vagrant	up	spins	up	the	Homestead	box.

vagrant	suspend	takes	a	snapshot	of	where	the	box	is	and	then	shuts	it	down;	like
“hibernating”	a	desktop	machine.

vagrant	halt	shuts	the	entire	box	down;	like	turning	off	a	desktop	machine.

vagrant	destroy	deletes	the	entire	box;	like	formatting	a	desktop	machine.

vagrant	provision	re-runs	the	provisioners	on	the	preexisting	box.

Connecting	to	Homestead	databases	from	desktop	applications
If	you	use	a	desktop	application	like	Sequel	Pro,	you’ll	likely	want	to	connect	to	your
Homestead	MySQL	databases	from	your	host	machine.	These	settings	will	get	you	going:

Connection	type:	Standard	(non-SSH)

Host:	127.0.0.1

Username:	homestead

Password:	secret

Port:	33060

Creating	a	New	Laravel	Project
There	are	two	ways	to	create	a	new	Laravel	project,	but	both	are	run	from	the	command	line.
The	first	option	is	to	globally	install	the	Laravel	installer	tool	(using	Composer);	the	second
is	to	use	Composer ’s	create-project	feature.

You	can	learn	about	both	options	in	more	detail	on	the	Installation	documentation	page,	but
I’d	recommend	the	Laravel	installer	tool.

http://laravel.com/docs/installation

Installing	Laravel	with	the	Laravel	Installer	Tool
If	you	have	Composer	installed	globally,	installing	the	Laravel	installer	tool	is	as	simple	as
running	the	following	command:

composer	global	require	"laravel/installer=~1.1"

Once	you	have	the	Laravel	installer	tool	installed,	spinning	up	a	new	Laravel	project	is
simple.	Just	run	this	command	from	your	command	line:

laravel	new	projectName

This	will	create	a	new	subdirectory	of	your	current	directory	named	projectName	and	install	a
bare	Laravel	project	in	it.

Installing	Laravel	with	Composer’s	create-project	Feature
Composer	also	offers	a	feature	called	create-project	for	creating	new	projects	with	a
particular	skeleton.	To	use	this	tool	to	create	a	new	Laravel	project,	issue	the	following
command:

composer	create-project	laravel/laravel	projectName	--prefer-dist

Just	like	the	installer	tool,	this	will	create	a	subdirectory	of	your	current	directory	named
projectName	that	contains	a	skeleton	Laravel	install,	ready	for	you	to	develop.

Laravel’s	Directory	Structure
When	you	open	up	a	directory	that	contains	a	skeleton	Laravel	application,	you’ll	see	the
following	files	and	directories:

app/

bootstrap/

config/

database/

public/

resources/

routes/

storage/

tests/

vendor/

.env

.env.example

.gitattributes

.gitignore

artisan

composer.json

composer.lock

gulpfile.js

package.json

phpunit.xml

readme.md

server.php

Let’s	walk	through	them	one	by	one	to	get	familiar.

The	Folders
The	root	directory	contains	the	following	folders	by	default:

app	is	where	the	bulk	of	your	actual	application	will	go.	Models,	controllers,	route
definitions,	commands,	and	your	PHP	domain	code	all	go	in	here.

bootstrap	contains	the	files	that	the	Laravel	framework	uses	to	boot	every	time	it	runs.

config	is	where	all	the	configuration	files	live.

database	is	where	database	migrations	and	seeds	live.

public	is	the	directory	the	server	points	to	when	it’s	serving	the	website.	This	contains
index.php,	which	is	the	front	controller	that	kicks	off	the	bootstrapping	process	and
routes	all	requests	appropriately.	It’s	also	where	any	public-facing	files	like	images,
stylesheets,	scripts,	or	downloads	go.

resources	is	where	non-PHP	files	that	are	needed	for	other	scripts	live.	Views,	language
files,	and	(optionally)	Sass/LESS	and	source	JavaScript	files	live	here.

routes	is	where	all	of	the	route	definitions	live,	both	for	HTTP	routes	and	“console
routes,”	or	Artisan	commands.

storage	is	where	caches,	logs,	and	compiled	system	files	live.

tests	is	where	unit	and	integration	tests	live.

vendor	is	where	Composer	installs	its	dependencies.	It’s	Git-ignored	(marked	to	be
excluded	from	your	version	control	system),	as	Composer	is	expected	to	run	as	a	part	of
your	deploy	process	on	any	remote	servers.

The	Loose	Files
The	root	directory	also	contains	the	following	files:

.env	and	.env.example	are	the	files	that	dictate	the	environment	variables	(variables	that
are	expected	to	be	different	in	each	environment	and	are	therefore	not	committed	to
version	control).	.env.example	is	a	template	that	each	environment	should	duplicate	to
create	its	own	.env	file,	which	is	Git-ignored.

artisan	is	the	file	that	allows	you	to	run	Artisan	commands	(see	Chapter	7)	from	the
command	line.

.gitignore	and	.gitattributes	are	Git	configuration	files.

composer.json	and	composer.lock	are	the	configuration	files	for	Composer;
composer.json	is	user-editable	and	composer.lock	is	not.	These	files	share	some	basic
information	about	this	project	and	also	define	its	PHP	dependencies.

gulpfile.js	is	the	(optional)	configuration	file	for	Elixir	and	Gulp.	This	is	for	compiling
and	processing	your	frontend	assets.

package.json	is	like	composer.json	but	for	frontend	assets.

phpunit.xml	is	a	configuration	file	for	PHPUnit,	the	tool	Laravel	uses	for	testing	out	of
the	box.

readme.md	is	a	Markdown	file	giving	a	basic	introduction	to	Laravel.

server.php	is	a	backup	server	that	tries	to	allow	less-capable	servers	to	still	preview	the
Laravel	application.

Configuration
The	core	settings	of	your	Laravel	application	—	database	connection,	queue	and	mail	settings,
etc.	—	live	in	files	in	the	config	folder.	Each	of	these	files	returns	an	array,	and	each	value	in
the	array	will	be	accessible	by	a	config	key	that	is	comprised	of	the	filename	and	all
descendant	keys,	separated	by	dots	(.)

So,	if	you	create	a	file	at	config/services.php	that	looks	like	this:

//	config/services.php

return	[

				'sparkpost'	=>	[

								'secret'	=>	'abcdefg'

]

];

you	will	now	have	access	to	that	config	variable	using
config('services.sparkpost.secret').

Any	configuration	variables	that	should	be	distinct	for	each	environment	(and	therefore	not
committed	to	source	control)	will	instead	live	in	your	.env	files.	Let’s	say	you	want	to	use	a
different	Bugsnag	API	key	for	each	environment.	You’d	set	the	config	file	to	pull	it	from	.env:

//	config/services.php

return	[

				'bugsnag'	=>	[

								'api_key'	=>	env('BUGSNAG_API_KEY')

]

];

This	env()	helper	function	pulls	a	value	from	your	.env	file	with	that	same	key.	So	now,	add
that	key	to	your	.env	(settings	for	this	environment)	and	.env.example	(template	for	all
environments)	files:

BUGSNAG_API_KEY=oinfp9813410942

Your	.env	file	already	contains	quite	a	few	environment-specific	variables	needed	by	the
framework,	like	which	mail	driver	you’ll	be	using	and	what	your	basic	database	settings	are.

Up	and	Running
You’re	now	up	and	running	with	a	bare	Laravel	install.	Run	git	init,	commit	the	bare	files
with	git	add	.	and	git	commit,	and	you’re	ready	to	start	coding.	That’s	it!	And	if	you’re
using	Valet,	you	can	run	the	following	commands	and	instantly	see	your	site	live	in	your
browser:

laravel	new	myProject	&&	cd	myProject	&&	valet	open

Every	time	I	start	a	new	project,	these	are	the	steps	I	take:

laravel	new	myProject

cd	myProject

git	init

git	add	.

git	commit	-m	"Initial	commit"

I	keep	all	of	my	sites	in	a	~/Sites	folder,	which	I	have	set	up	as	my	primary	Valet	directory,	so
in	this	case	I’d	instantly	have	myProject.dev	accessible	in	my	browser	with	no	added	work.	I
can	edit	.env	and	point	it	to	a	particular	database,	add	that	database	in	my	MySQL	app,	and	I’m
ready	to	start	coding.

LAMBO
I	perform	the	this	set	of	steps	so	often	that	I	created	a	simple	global	Composer	package	to	do	it	for	me.	It’s	called
Lambo,	and	you	can	learn	more	about	it	on	GitHub.

https://github.com/tightenco/lambo

Testing
In	every	chapter	after	this,	the	“Testing”	section	at	the	end	of	the	chapter	will	show	you	how	to
write	tests	for	the	feature	or	features	that	were	covered.	Since	this	chapter	doesn’t	cover	a
testable	feature,	let’s	talk	tests	quickly.	(To	learn	more	about	writing	and	running	tests	in
Laravel,	head	over	to	Chapter	12.)

Out	of	the	box,	Laravel	brings	in	PHPUnit	as	a	dependency	and	is	configured	to	run	the	tests
in	any	file	in	the	tests	directory	whose	name	ends	with	Test.php	(for	example,
tests/UserTest.php).

So,	the	simplest	way	to	write	tests	is	to	create	a	file	in	the	tests	directory	with	a	name	that	ends
with	Test.php.	And	the	easiest	way	to	run	them	is	to	run	./vendor/bin/phpunit	from	the
command	line	(in	the	project	root).

If	any	tests	require	database	access,	be	sure	to	run	your	tests	from	the	machine	where	your
database	is	hosted	—	so	if	you’re	hosting	your	database	in	Vagrant,	make	sure	to	ssh	into
your	Vagrant	box	to	run	your	tests	from	there.	Again,	you	can	learn	about	this	and	much	more
in	Chapter	12.

TL;DR
Since	Laravel	is	a	PHP	framework,	it’s	very	simple	to	serve	it	locally.	Laravel	also	provides
two	tools	for	managing	your	local	development:	a	simpler	tool	called	Valet	that	uses	your
local	machine	to	provide	your	dependencies,	and	a	preconfigured	Vagrant	setup	named
Homestead.	Laravel	relies	on,	and	can	be	installed	by,	Composer,	and	comes	out	of	the	box
with	a	series	of	folders	and	files	that	reflect	both	its	conventions	and	its	relationship	with
other	open	source	tools.

Chapter	3.	Routing	and	Controllers

The	essential	function	of	any	web	application	framework	is	to	take	requests	from	a	user	and
deliver	responses,	usually	via	HTTP(S).	This	means	defining	an	application’s	routes	is	the
first	and	most	important	project	to	tackle	when	learning	a	web	framework;	without	routes,
you	have	no	ability	to	interact	with	the	end	user.

In	this	chapter	we	will	examine	routes	in	Laravel	and	show	how	to	define	them,	how	to	point
them	to	the	code	they	should	execute,	and	how	to	use	Laravel’s	routing	tools	to	handle	a
diverse	array	of	routing	needs.

Route	Definitions
In	a	Laravel	application,	you	will	define	your	“web”	routes	in	routes/web.php	and	your	“API”
routes	in	routes/api.php.	Web	routes	are	those	that	will	be	visited	by	your	end	users;	API
routes	are	those	for	your	API,	if	you	have	one.	For	now,	we’ll	primarily	focus	on	the	routes
in	routes/web.php.

NOTE
In	projects	running	versions	of	Laravel	prior	to	5.3,	there	will	be	only	one	routes	file,	located	at
app/Http/routes.php.

The	simplest	way	to	define	a	route	is	to	match	a	path	(e.g.,	/)	with	a	closure,	as	seen	in
Example	3-1.

Example	3-1.	Basic	route	definition
//	routes/web.php

Route::get('/',	function	()	{

				return	'Hello,	World!';

});

WHAT’S	A	CLOSURE?

Closures	are	PHP’s	version	of	anonymous	functions.	A	closure	is	a	function	that	you	can	pass	around	as	an	object,	assign
to	a	variable,	pass	as	a	parameter	to	other	functions	and	methods,	or	even	serialize.

You’ve	now	defined	that,	if	anyone	visits	/	(the	root	of	your	domain),	Laravel’s	router	should
run	the	closure	defined	there	and	return	the	result.	Note	that	we	return	our	content	and	don’t
echo	or	print	it.

A	QUICK	INTRODUCTION	TO	MIDDLEWARE
You	might	be	wondering,	“Why	am	I	returning	‘Hello,	World!’	instead	of	echoing	it?”

There	are	quite	a	few	answers,	but	the	simplest	is	that	there	are	a	lot	of	wrappers	around	Laravel’s	request	and
response	cycle,	including	something	called	middleware.	When	your	route	closure	or	controller	method	is	done,
it’s	not	time	to	send	the	output	to	the	browser	yet;	returning	the	content	allows	it	to	continue	flowing	through	the
response	stack	and	the	middleware	before	it	is	returned	back	to	the	user.

Many	simple	websites	could	be	defined	entirely	within	the	web	routes	file.	With	a	few	simple
GET	routes	combined	with	some	templates	as	illustrated	in	Example	3-2,	you	can	can	serve	a
classic	website	easily.

Example	3-2.	Sample	website
Route::get('/',	function	()	{

				return	view('welcome');

});

Route::get('about',	function	()	{

				return	view('about');

});

Route::get('products',	function	()	{

				return	view('products');

});

Route::get('services',	function	()	{

				return	view('services');

});

STATIC	CALLS
If	you	have	much	experience	developing	PHP,	you	might	be	surprised	to	see	static	calls	on	the	Route	class.	This	is
not	actually	a	static	method	per	se,	but	rather	service	location	using	Laravel’s	facades,	which	we’ll	cover	in
Chapter	11.

If	you	prefer	to	avoid	facades,	you	can	accomplish	these	same	definitions	like	this:

$router->get('/',	function	()	{

				return	'Hello,	World!';

});

HTTP	METHODS

If	you’re	not	familiar	with	the	idea	of	HTTP	methods,	read	on	in	this	chapter	for	more	information,	but	for	now,	just	know
that	every	HTTP	request	has	a	“verb,”	or	action,	along	with	it.	Laravel	allows	you	to	define	your	routes	based	on	which
verb	was	used;	the	most	common	are	GET	and	POST,	followed	by	PUT,	DELETE,	and	PATCH.	Each	method	communicates	a
different	thing	to	the	server,	and	to	your	code,	about	the	intentions	of	the	caller.

Route	Verbs
You	might’ve	noticed	that	we’ve	been	using	Route::get	in	our	route	definitions.	This	means
we’re	telling	Laravel	to	only	match	for	these	routes	when	the	HTTP	request	uses	the	GET
action.	But	what	if	it’s	a	form	POST,	or	maybe	some	JavaScript	sending	PUT	or	DELETE
requests?	There	are	a	few	other	options	for	methods	to	call	on	a	route	definition,	as	illustrated
in	Example	3-3.

Example	3-3.	Route	verbs
Route::get('/',	function	()	{

				return	'Hello,	World!';

});

Route::post('/',	function	()	{});

Route::put('/',	function	()	{});

Route::delete('/',	function	()	{});

Route::any('/',	function	()	{});

Route::match(['get',	'post'],	'/',	function	()	{});

Route	Handling
As	you’ve	probably	guessed,	passing	a	closure	to	the	route	definition	is	not	the	only	way	to
teach	it	how	to	resolve	a	route.	Closures	are	quick	and	simple,	but	the	larger	your	application
gets,	the	clumsier	it	becomes	to	put	all	of	your	routing	logic	in	one	file.	Additionally,
applications	using	route	closures	can’t	take	advantage	of	Laravel’s	route	caching	(more	on
that	later),	which	can	shave	up	to	hundreds	of	milliseconds	off	of	each	request.

The	other	common	option	is	to	pass	a	controller	name	and	method	as	a	string	in	place	of	the
closure,	as	in	Example	3-4.

Example	3-4.	Routes	calling	controller	methods
Route::get('/',	'WelcomeController@index');

This	is	telling	Laravel	to	pass	requests	to	that	path	to	the	index()	method	of	the
App\Http\Controllers\WelcomeController	controller.	This	method	will	be	passed	the	same
parameters	and	treated	the	same	way	as	a	closure	you	might’ve	alternatively	put	in	its	place.

Route	Parameters
If	the	route	you’re	defining	has	parameters	—	segments	in	the	URL	structure	that	are	variable
—	it’s	simple	to	define	them	in	your	route	and	pass	them	to	your	closure	(see	Example	3-5).

Example	3-5.	Route	parameters
Route::get('users/{id}/friends',	function	($id)	{

				//

});

THE	NAMING	RELATIONSHIP	BETWEEN	ROUTE	PARAMETERS	
AND	CLOSURE/CONTROLLER 	METHOD	PARAMETERS

As	you	can	see	in	Example	3-5,	it’s	most	common	to	use	the	same	names	for	your	route	parameters	({id})	and	the
method	parameters	they	inject	into	your	route	definition	(function	($id)).	But	is	this	necessary?

Unless	you’re	using	route/model	binding,	no.	The	only	thing	that	defines	which	route	parameter	matches	with	which
method	parameter	is	their	order	(left	to	right),	as	you	can	see	here:

Route::get('users/{userId}/comments/{commentId}',	function	(

				$thisIsActuallyTheRouteId,

				$thisisReallyTheCommentId

)	{

				//

});

That	having	been	said,	just	because	you	can	make	them	different	doesn’t	mean	you	should.	I	recommend	keeping	them
the	same	for	the	sake	of	future	developers,	who	could	get	tripped	up	by	inconsistent	naming.

You	can	also	make	your	route	parameters	optional	by	including	a	question	mark	(?)	after	the
parameter	name,	as	illustrated	in	Example	3-6.	In	this	case,	you	should	also	provide	a	default
value	for	the	route’s	corresponding	variable.

Example	3-6.	Optional	route	parameters
Route::get('users/{id?}',	function	($id	=	'fallbackId')	{

				//

});

And	you	can	use	regular	expressions	(regexes)	to	define	that	a	route	should	only	match	if	a
parameter	meets	particular	requirements,	as	in	Example	3-7.

Example	3-7.	Regular	expression	route	constraints
Route::get('users/{id}',	function	($id)	{

				//

})->where('id',	'[0-9]+');

Route::get('users/{username}',	function	($username)	{

				//

})->where('username',	'[A-Za-z]+');

Route::get('posts/{id}/{slug}',	function	($id,	$slug)	{

				//

})->where(['id'	=>	'[0-9]+',	'slug'	=>	'[A-Za-z]+']);

As	you’ve	probably	guessed,	if	you	visit	a	path	that	matches	a	route	string,	but	the	regex
doesn’t	match	the	parameter,	it	won’t	be	matched.	Since	routes	are	matched	top	to	bottom,

users/abc	would	skip	the	first	closure	in	Example	3-7,	but	it	would	be	matched	by	the	second
closure,	so	it	would	get	routed	there.	On	the	other	hand,	posts/abc/123	wouldn’t	match	any
of	the	closures,	so	it	would	return	a	404	Not	Found	error.

Route	Names
The	simplest	way	to	refer	to	these	routes	elsewhere	in	your	application	is	just	by	their	path.
There’s	a	url()	helper	to	simplify	that	linking	in	your	views,	if	you	need	it;	see	Example	3-8
for	an	example.	The	helper	will	prefix	your	route	with	the	full	domain	of	your	site.

Example	3-8.	URL	helper
<a	href="<?php	echo	url('/');	?>">

//	outputs	

However,	Laravel	also	allows	you	to	name	each	route,	which	enables	you	to	refer	to	it	without
explicitly	referencing	the	URL.	This	is	helpful	because	it	means	you	can	give	simple
nicknames	to	complex	routes,	and	also	because	linking	them	by	name	means	you	don’t	have
to	rewrite	your	frontend	links	if	the	paths	change	(see	Example	3-9).

Example	3-9.	Defining	route	names
//	Defining	a	route	with	name	in	routes/web.php:

Route::get('members/{id}',	'MembersController@show')->name('members.show');

//	Link	the	route	in	a	view	using	the	route()	helper

<a	href="<?php	echo	route('members.show',	['id'	=>	14]);	?>">

This	example	illustrates	a	few	new	concepts.	First,	we’re	using	fluent	route	definition	to	add
the	name,	by	chaining	the	name()	method	after	the	get()	method.	This	method	allows	us	to
name	the	route,	giving	it	a	short	alias	to	make	it	easier	to	reference	elsewhere.

DEFINING	CUSTOM	ROUTES	IN	LARAVEL	5.1
Fluent	route	definitions	don’t	exist	in	Laravel	5.1.	You’ll	need	to	instead	pass	an	array	to	the	second	parameter	of
your	route	definition;	check	the	Laravel	docs	to	see	more	about	how	this	works.	Here’s	Example	3-9	in	Laravel
5.1:

Route::get('members/{id}',	[

				'as'	=>	'members.show',

				'uses'	=>	'MembersController@show'

]);

In	our	example,	we’ve	named	this	route	members.show;	resourcePlural.action	is	a
common	convention	within	Laravel	for	route	and	view	names.

ROUTE	NAMING	CONVENTIONS

You	can	name	your	route	anything	you’d	like,	but	the	common	convention	is	to	use	the	plural	of	the	resource	name,	then
a	period,	then	the	action.	So,	here	are	the	routes	most	common	for	a	resource	named	photo:

photos.index

photos.create

photos.store

photos.show

photos.edit

photos.update

photos.destroy

To	learn	more	about	these	conventions,	see	“Resource	Controllers”.

We	also	introduced	the	route()	helper.	Just	like	url(),	it’s	intended	to	be	used	in	views	to
simplify	linking	to	a	named	route.	If	the	route	has	no	parameters,	you	can	simply	pass	the
route	name:	(route('members.index'))	and	receive	a	route	string
http://myapp.com/members/index).	If	it	has	parameters,	pass	them	in	as	an	array	as	the
second	parameter	like	we	did	in	this	example.

In	general,	I	recommend	using	route	names	instead	of	paths	to	refer	to	your	routes,	and
therefore	using	the	route()	helper	instead	of	the	url()	helper.	Sometimes	it	can	get	a	bit
clumsy	—	for	example,	if	you’re	working	with	multiple	subdomains	—	but	it	provides	an
incredible	level	of	flexibility	to	later	change	the	application’s	routing	structure	without	major
penalty.

PASSING	ROUTE	PARAMETERS	TO	THE	ROUTE() 	HELPER

When	your	route	has	parameters	(e.g.,	users/{id}),	you	need	to	define	those	parameters	when	you’re	using	the	route()
helper	to	generate	a	link	to	the	route.

There	are	a	few	different	ways	to	pass	these	parameters.	Let’s	imagine	a	route	defined	as
users/{userId}/comments/{commentId}.	If	the	user	ID	is	1	and	the	comment	ID	is	2,	let’s	look	at	a	few	options	we	have
available	to	us:

Option	1:

route('users.comments.show',	[1,	2])

//	http://myapp.com/users/1/comments/2

Option	2:

route('users.comments.show',	['userId'	=>	1,	'commentId'	=>	2])

//	http://myapp.com/users/1/comments/2

Option	3:

route('users.comments.show',	['commentId'	=>	2,	'userId'	=>	1])

//	http://myapp.com/users/1/comments/2

Option	4:

route('users.comments.show',	['userId'	=>	1,	'commentId'	=>	2,	'opt'	=>	'a'])

//	http://myapp.com/users/1/comments/2?opt=a

As	you	can	see,	nonkeyed	array	values	are	assigned	in	order;	keyed	array	values	are	matched	with	the	route	parameters
matching	their	keys,	and	anything	left	over	is	added	as	a	query	parameter.

Route	Groups
Often	a	group	of	routes	share	a	particular	characteristic	—	a	certain	authentication
requirement,	a	path	prefix,	or	perhaps	a	controller	namespace.	Defining	these	shared
characteristics	again	and	again	on	each	route	not	only	seems	tedious	but	also	can	muddy	up
the	shape	of	your	routes	file	and	obscure	some	of	the	structures	of	your	application.

Route	groups	allow	you	to	group	several	routes	together,	and	apply	any	shared	configuration
settings	once	to	the	entire	group,	to	reduce	this	duplication.	Additionally,	route	groups	are
visual	cues	to	future	developers	(and	to	your	own	brain)	that	these	routes	are	grouped
together.

To	group	two	or	more	routes	together,	you	“surround”	the	route	definitions	with	a	route
group,	as	shown	in	Example	3-10.	In	reality,	you’re	actually	passing	a	closure	to	the	group
definition,	and	defining	the	grouped	routes	within	that	closure.

Example	3-10.	Defining	a	route	group
Route::group([],	function	()	{

				Route::get('hello',	function	()	{

								return	'Hello';

				});

				Route::get('world',	function	()	{

								return	'World';

				});

});

By	default,	a	route	group	doesn’t	actually	do	anything.	There’s	no	difference	between	the
group	in	Example	3-10	and	separating	a	segment	of	your	routes	with	code	comments.	The
empty	array	that’s	the	first	parameter,	however,	allows	you	to	pass	a	variety	of	configuration
settings	that	will	apply	to	the	entire	route	group.

Middleware
Probably	the	most	common	use	for	route	groups	is	to	apply	middleware	to	a	group	of	routes.
We’ll	learn	more	about	middleware	in	Chapter	10,	but,	among	other	things,	they’re	what
Laravel	uses	for	authenticating	users	and	restricting	guest	users	from	using	certain	parts	of	a
site.

In	Example	3-11,	we’re	creating	a	route	group	around	the	dashboard	and	account	views	and
applying	the	auth	middleware	to	both.	In	this	example,	it	means	users	have	to	be	logged	in	to
the	application	to	view	the	dashboard	or	the	account	page.

Example	3-11.	Restricting	a	group	of	routes	to	logged-in	users	only
Route::group(['middleware'	=>	'auth'],	function	()	{

				Route::get('dashboard',	function	()	{

								return	view('dashboard');

				});

				Route::get('account',	function	()	{

								return	view('account');

				});

});

APPLYING	MIDDLEWARE	IN	CONTROLLERS
Often	it’s	clearer	and	more	direct	to	attach	middleware	to	your	routes	in	the	controller	instead	of	at	the	route
definition.	You	can	do	this	by	calling	the	middleware()	method	in	the	constructor	of	your	controller.	The	string
you	pass	to	the	middleware()	method	is	the	name	of	the	middleware,	and	you	can	optionally	chain	modifier
methods	(only()	and	except())	to	define	which	methods	will	receive	that	middleware:

class	DashboardController	extends	Controller

{

				public	function	__construct()

				{

								$this->middleware('auth');

								$this->middleware('admin-auth')

												->only('admin');

								$this->middleware('team-member')

												->except('admin');

				}

}

Note	that,	if	you’re	doing	a	lot	of	“only”	and	“except”	customizations,	that’s	often	a	sign	that	you	should	break
out	a	new	controller	for	the	exceptional	routes.

Path	Prefixes
If	you	have	a	group	of	routes	that	share	a	segment	of	their	path	—	for	example,	if	your	site’s
API	is	prefixed	with	/api	—	you	can	use	route	groups	to	simplify	this	structure	(see
Example	3-12).

Example	3-12.	Prefixing	a	group	of	routes
Route::group(['prefix'	=>	'api'],	function	()	{

				Route::get('/',	function	()	{

								//	Handles	the	path	/api

				});

				Route::get('users',	function	()	{

								//	Handles	the	path	/api/users

				});

});

Note	that	each	prefixed	group	also	has	a	/	route	that	represents	the	root	of	the	prefix	—	in
Example	3-12	that’s	/api.

Subdomain	Routing
Subdomain	routing	is	the	same	as	route	prefixing,	but	it’s	scoped	by	subdomain	instead	of
route	prefix.	There	are	two	primary	uses	for	this.	First,	you	may	want	to	present	different
sections	of	the	application	(or	entirely	different	applications)	to	different	subdomains.
Example	3-13	shows	how	you	can	achieve	this.

Example	3-13.	Subdomain	routing
Route::group(['domain'	=>	'api.myapp.com'],	function	()	{

				Route::get('/',	function	()	{

								//

				});

});

Second,	you	might	want	to	set	part	of	the	subdomain	as	a	parameter,	as	illustrated	in
Example	3-14.	This	is	most	often	done	in	cases	of	multitenancy	(think	Slack	or	Harvest,
where	each	company	gets	its	own	subdomain,	like	tighten.slack.co).

Example	3-14.	Parameterized	subdomain	routing
Route::group(['domain'	=>	'{account}.myapp.com'],	function	()	{

				Route::get('/',	function	($account)	{

								//

				});

				Route::get('users/{id}',	function	($account,	$id)	{

								//

				});

});

Note	that	any	parameters	for	the	group	get	passed	into	the	grouped	routes’	methods	as	the
first	parameter(s).

Namespace	Prefixes
When	you’re	grouping	routes	by	subdomain	or	route	prefix,	it’s	likely	their	controllers	have
a	similar	PHP	namespace.	In	the	API	example,	all	of	the	API	routes’	controllers	might	be
under	an	API	namespace.	By	using	the	route	group	namespace	prefix,	as	shown	in	Example	3-
15,	you	can	avoid	long	controller	references	in	groups	like	"API/ControllerA@index"	and
"API/ControllerB@index".

Example	3-15.	Route	group	namespace	prefixes
//	App\Http\Controllers\ControllerA

Route::get('/',	'ControllerA@index');

Route::group(['namespace'	=>	'API'],	function	()	{

				//	App\Http\Controllers\API\ControllerB

				Route::get('api/',	'ControllerB@index');

});

Name	Prefixes
The	prefixes	don’t	stop	there.	It’s	common	that	route	names	will	reflect	the	inheritance	chain
of	path	elements,	so	users/comments/5	will	be	served	by	a	route	named	users.comments.show.
In	this	case,	it’s	common	to	use	a	route	group	around	all	of	the	routes	that	are	beneath	the
users.comments	resource.

Just	like	we	can	prefix	URL	segments	and	controller	namespaces,	we	can	also	prefix	strings
to	the	route	name.	With	route	group	name	prefixes,	we	can	define	that	every	route	within	this
group	should	have	a	given	string	prefixed	to	its	name.	In	this	context,	we’re	prefixing
"users."	to	each	route	name,	then	"comments."	(see	Example	3-16).

Example	3-16.	Route	group	name	prefixes
Route::group(['as'	=>	'users.',	'prefix'	=>	'users'],	function	()	{

				Route::group(['as'	=>	'comments.',	'prefix'	=>	'comments'],	function	()	{

								//	Route	name	will	be	users.comments.show

								Route::get('{id}',	function	()	{

												//

								})->name('show');

				});

});

Views
In	a	few	of	the	route	closures	we’ve	looked	at	so	far,	we’ve	seen	something	along	the	lines	of
return	view('account').	What’s	going	on	here?

If	you’re	not	familiar	with	the	Model–View–Controller	(MVC)	pattern,	views	(or	templates)
are	files	that	describe	what	some	particular	output	should	look	like.	You	might	have	views	for
JSON	or	XML	or	emails,	but	the	most	common	views	in	a	web	framework	output	HTML.

In	Laravel,	there	are	two	formats	of	view	you	can	use	out	of	the	box:	plain	PHP,	or	Blade
templates	(see	Chapter	4).	The	difference	is	in	the	filename:	about.php	will	be	rendered	with
the	PHP	engine,	and	about.blade.php	will	be	rendered	with	the	Blade	engine.

THREE	WAYS	TO	LOAD	A	VIEW()
There	are	three	different	ways	to	return	a	view.	For	now,	just	concern	yourself	with	view(),	but	if	you	ever	see
View::make(),	it’s	the	same	thing,	and	you	could	also	inject	the	Illuminate\View\ViewFactory	if	you	prefer.

Once	you’ve	loaded	a	view,	you	have	the	option	to	simply	return	it	(as	in	Example	3-17),
which	will	work	fine	if	the	view	doesn’t	rely	on	any	variables	from	the	controller.

Example	3-17.	Simple	view()	usage
Route::get('/',	function	()	{

			return	view('home');

});

This	code	looks	for	a	view	in	resources/views/home.blade.php	or	resources/views/home.php,
and	loads	its	contents	and	parses	any	inline	PHP	or	control	structures	until	you	have	just	the
view’s	output.	Once	you	return	it,	it’s	passed	on	to	the	rest	of	the	response	stack	and	eventually
returned	to	the	user.

But	what	if	you	need	to	pass	in	variables?	Take	a	look	at	Example	3-18.

Example	3-18.	Passing	variables	to	views
Route::get('tasks',	function	()	{

				return	view('tasks.index')

								->with('tasks',	Task::all());

});

This	closure	loads	the	resources/views/tasks/index.blade.php	or
resources/views/tasks/index.php	view	and	passes	it	a	single	variable	named	tasks,	which
contains	the	result	of	the	Task::all()	method.	Task::all()	is	an	Eloquent	database	query
we’ll	learn	about	in	Chapter	8.

Using	View	Composers	to	Share	Variables	with	Every	View
Sometimes	it	can	become	a	hassle	to	pass	the	same	variables	over	and	over.	There	may	be	a
variable	that	you	want	accessible	to	every	view	in	the	site,	or	to	a	certain	class	of	views	or	a
certain	included	subview	—	for	example,	all	views	related	to	tasks,	or	the	header	partial.

It’s	possible	to	share	certain	variables	with	every	template	or	just	certain	templates,	like	in	the
following	code:

view()->share('variableName',	'variableValue');

To	learn	more,	check	out	“View	Composers	and	Service	Injection”.

Controllers
I’ve	mentioned	controllers	a	few	times,	but	until	now	most	of	the	examples	have	shown	route
closures.	If	you’re	not	familiar	with	the	MVC	pattern	(Figure	3-1),	controllers	are	essentially
classes	that	organize	the	logic	of	one	or	more	routes	together	in	one	place.	Controllers	tend
to	group	similar	routes	together,	especially	if	your	application	is	structured	along	a
traditionally	CRUD-like	format;	in	this	case,	a	controller	might	handle	all	the	actions	that	can
be	performed	on	a	particular	resource.

Figure	3-1.	A	basic	illustration	of	MVC

WHAT	IS	CRUD?
CRUD	stands	for	create,	read,	update,	delete,	which	are	the	four	primary	operations	that	web	applications	most
commonly	provide	on	a	resource.	For	example,	you	can	create	a	new	blog	post,	you	can	read	that	post,	you	can
update	it,	or	you	can	delete	it.

It	may	be	tempting	to	cram	all	of	the	application’s	logic	into	the	controllers,	but	it’s	better	to
think	of	controllers	as	the	traffic	cops	that	route	HTTP	requests	around	your	application.
Since	there	are	other	ways	requests	can	come	into	your	application	—	cron	jobs,	Artisan
command-line	calls,	queue	jobs,	etc.	—	it’s	wise	to	not	rely	on	controllers	for	much	behavior.
This	means	a	controller ’s	primary	job	is	to	capture	the	intent	of	an	HTTP	request	and	pass	it
on	to	the	rest	of	the	application.

So,	let’s	create	a	controller.	One	easy	way	to	do	this	is	with	an	Artisan	command,	so	from	the
command	line	run	the	following:

php	artisan	make:controller	TasksController

ARTISAN	AND	ARTISAN	GENERATORS
Laravel	comes	bundled	with	a	command-line	tool	called	Artisan.	Artisan	can	be	used	to	run	migrations,	create
users	and	other	database	records	manually,	and	perform	many	other	manual,	one-time	tasks.

Under	the	make	namespace,	Artisan	provides	tools	for	generating	skeleton	files	for	a	variety	of	system	files.
That’s	what	allows	us	to	run	php	artisan	make:controller.

To	learn	more	about	this	and	other	Artisan	features,	see	Chapter	7.

This	will	create	a	new	file	named	TasksController.php	in	app/Http/Controllers,	with	the
contents	shown	in	Example	3-19.

Example	3-19.	Default	generated	controller
<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

use	App\Http\Requests;

class	TasksController	extends	Controller

{

}

Modify	this	file	as	shown	in	Example	3-20,	creating	a	new	public	method	called	home().	We’ll
just	return	some	text	there.

Example	3-20.	Simple	controller	example
<?php

use	App\Http\Controllers\Controller;

class	TasksController	extends	Controller

{

				public	function	home()

				{

								return	'Hello,	World!';

				}

}

Then	like	we	learned	before,	we’ll	hook	up	a	route	to	it,	as	shown	in	Example	3-21.

Example	3-21.	Route	for	the	simple	controller
//	routes/web.php

<?php

Route::get('/',	'TasksController@home');

That’s	it.	Visit	the	/	route	and	you’ll	see	the	words	“Hello,	World!”

CONTROLLER 	NAMESPACING

In	Example	3-21	we	referenced	a	controller	with	the	fully	qualified	class	name	of
App\Http\Controllers\TasksController,	but	we	only	used	the	class	name.	This	isn’t	because	we	can	simply	reference
controllers	by	their	class	name.	Rather,	we	can	ignore	the	App\Http\Controllers\	when	we	reference	controllers;	by
default,	Laravel	is	configured	to	look	for	controllers	within	that	namespace.

This	means	that	if	you	have	a	controller	with	the	fully	qualified	class	name	of
App\Http\Controllers\API\ExercisesController,	you’d	reference	it	in	a	route	definition	as	API\ExercisesController.

The	most	common	use	of	a	controller	method,	then,	will	be	something	like	Example	3-22.

Example	3-22.	Common	controller	method	example
//	TasksController.php

...

public	function	index()

{

				return	view('tasks.index')

								->with('tasks',	Task::all());

}

This	controller	method	loads	the	resources/views/tasks/index.blade.php	or
resources/views/tasks/index.php	view	and	passes	it	a	single	variable	named	tasks,	which
contains	the	result	of	the	Task::all()	Eloquent	method.

GENERATING	RESOURCE	CONTROLLERS
If	you	ever	used	php	artisan	make:controller	in	Laravel	prior	to	5.3,	you	might	be	expecting	it	to	autogenerate
methods	for	all	of	the	basic	resource	routes	like	create()	and	update().	You	can	bring	this	behavior	back	in
Laravel	5.3	by	passing	the	--resource	flag	when	you	create	the	controller:

php	artisan	make:controller	TasksController	--resource

Getting	User	Input
The	second	most	common	action	to	perform	in	a	controller	method	is	to	take	input	from	the
user	and	act	on	it.	That	introduces	a	few	new	concepts,	so	let’s	take	a	look	at	a	bit	of	sample
code	and	walk	through	the	new	pieces.

First,	let’s	bind	it	quickly;	see	Example	3-23.

Example	3-23.	Binding	basic	form	actions
//	routes/web.php

Route::get('tasks/create',	'TasksController@create');

Route::post('tasks',	'TasksController@store');

Notice	that	we’re	binding	the	GET	action	of	tasks/create	(which	shows	the	form)	and	the	POST
action	of	tasks/	(which	is	where	we	POST	when	we’re	creating	a	new	task).	We	can	assume	the
create()	method	in	our	controller	just	shows	a	form,	so	let’s	look	at	the	store()	method	in
Example	3-24.

Example	3-24.	Common	form	input	controller	method
//	TasksController.php

...

public	function	store()

{

				$task	=	new	Task;

				$task->title	=	Input::get('title');

				$task->description	=	Input::get('description');

				$task->save();

				return	redirect('tasks');

}

This	example	makes	use	of	Eloquent	models	and	the	redirect()	functionality,	and	we’ll	talk
about	them	more	later,	but	you	can	see	what	we’re	doing	here:	we	create	a	new	Task,	pull	data
out	of	the	user	input	and	set	it	on	the	task,	save	it,	and	then	redirect	back	to	the	page	that	shows
all	tasks.

There	are	two	main	ways	to	get	user	input	from	a	POST:	the	Input	facade,	which	we	used	here,
and	the	Request	object,	which	we’ll	talk	about	next.

IMPORTING	FACADES
If	you	follow	any	of	these	examples,	whether	in	controllers	or	any	other	PHP	class	that	is	namespaced,	you	might
find	errors	showing	that	the	facade	cannot	be	found.	This	is	because	they’re	not	present	in	every	namespace,	but
rather	they’re	made	available	in	the	root	namespace.

So,	in	Example	3-24,	we’d	need	to	import	the	Input	facade	at	the	top	of	the	file.	There	are	two	ways	to	do	that:
either	we	can	import	\Input,	or	we	can	import	Illuminate\Support\Facades\Input.	For	example:

<?php

namespace	App\Http\Controllers;

use	Illuminate\Support\facades\Input;

class	TasksController

{

				public	function	store()

				{

								$task	=	new	Task;

								$task->title	=	Input::get('title');

								$task->description	=	Input::get('description');

								$task->save();

								return	redirect('tasks');

				}

As	you	can	see,	we	can	get	the	value	of	any	user-provided	information,	whether	from	a	query
parameter	or	a	POST	value,	using	Input::get('fieldName').	So	our	user	filled	out	two	fields
on	the	“add	task”	page:	“title”	and	“description.”	We	retrieve	both	using	the	Input	facade,
save	them	to	the	database,	and	then	return.

Injecting	Dependencies	into	Controllers
Laravel’s	facades	present	a	simple	interface	to	the	most	useful	classes	in	Laravel’s	codebase.
You	can	get	information	about	the	current	request	and	user	input,	the	session,	caches,	and
much	more.

But	if	you	prefer	to	inject	your	dependencies,	or	if	you	want	to	use	a	service	that	doesn’t	have
a	facade,	you’ll	need	to	find	some	way	to	bring	instances	of	these	classes	into	your	controller.

This	is	our	first	exposure	to	Laravel’s	service	container.	For	now,	if	this	is	unfamiliar,	you
can	think	about	it	as	a	little	bit	of	Laravel	magic;	or,	if	you	want	to	know	more	about	how	it’s
actually	functioning,	you	can	skip	ahead	to	Chapter	11.

All	controller	methods	(including	the	constructors)	are	resolved	out	of	Laravel’s	container,
which	means	anything	you	typehint	that	the	container	knows	how	to	resolve	will	be
automatically	injected.

As	a	nice	example,	what	if	you’d	prefer	having	an	instance	of	the	Request	object	instead	of
using	the	facade?	Just	typehint	Illuminate\Http\Request	in	your	method	parameters,	like	in
Example	3-25.

Example	3-25.	Controller	method	injection	via	typehinting
//	TasksController.php

...

public	function	store(\Illuminate\Http\Request	$request)

{

				$task	=	new	Task;

				$task->title	=	$request->input('title');

				$task->description	=	$request->input('description');

				$task->save();

				return	redirect('tasks');

}

So,	you’ve	defined	a	parameter	that	must	be	passed	into	the	store()	method.	And	since	you
typehinted	it,	and	since	Laravel	knows	how	to	resolve	that	class	name,	you’re	going	to	have
the	Request	object	ready	for	you	to	use	in	your	method	with	no	work	on	your	part.	No
explicit	binding,	no	anything	else	—	it’s	just	there	as	the	$request	variable.

By	the	way,	this	is	actually	how	I	and	many	other	Laravel	developers	prefer	to	get	the	user
input:	inject	an	instance	of	the	Request	and	read	the	user	input	from	there,	instead	of	relying
on	the	Input	facade.

Resource	Controllers
Sometimes	naming	the	methods	in	your	controllers	can	be	the	hardest	part	of	writing	a
controller.	Thankfully,	Laravel	has	some	conventions	for	all	of	the	routes	of	a	traditional
REST/CRUD	controller	(called	a	“resource	controller”	in	Laravel);	additionally,	it	comes
with	a	generator	out	of	the	box	and	a	convenience	route	definition	that	allows	you	to	bind	an
entire	resource	controller	at	once.

To	see	the	methods	that	Laravel	expects	for	a	resource	controller,	let’s	generate	a	new
controller	from	the	command	line:

php	artisan	make:controller	MySampleResourceController	--resource

Now	open	app/Http/Controllers/MySampleResourceController.php.	You’ll	see	it	comes
prefilled	with	quite	a	few	methods.	Let’s	walk	over	what	each	represents.	We’ll	use	a	Task	as
an	example.

The	methods	of	Laravel’s	resource	controllers
For	each,	you	can	see	the	HTTP	verb,	the	URL,	the	controller	method	name,	and	the	“name.”
Table	3-1	shows	the	HTTP	verb,	the	URL,	the	controller	method	name,	and	the	“name”	for
each	of	these	default	methods.

Table	3-1.	The	methods	of	Laravel’s	resource	controllers

Verb URL Controller	method Name Description

GET tasks index() tasks.index Show	all	tasks

GET tasks/create create() tasks.create Show	the	create	task	form

POST tasks store() tasks.store Accept	form	submission	from	the	create	task	form

GET tasks/{task} show() tasks.show Show	one	task

GET tasks/{task}/edit edit() tasks.edit Edit	one	task

PUT/PATCH tasks/{task} update() tasks.update Accept	form	submission	from	the	edit	task	form

DELETE tasks/{task} destroy() tasks.destroy Delete	one	task

Binding	a	resource	controller
So,	we’ve	seen	that	these	are	the	conventional	route	names	to	use	in	Laravel,	and	also	that	it’s
easy	to	generate	a	resource	controller	with	methods	for	each	of	these	default	routes.
Thankfully,	you	don’t	have	to	generate	routes	for	each	of	these	controller	methods	by	hand,	if
you	don’t	want	to.	Instead,	there’s	a	trick	for	that,	and	it’s	called	“resource	controller
binding.”	Take	a	look	at	Example	3-26.

Example	3-26.	Resource	controller	binding
//	routes/web.php

Route::resource('tasks',	'TasksController');

This	will	automatically	bind	all	of	the	routes	for	this	resource	to	the	appropriate	method
names	on	the	specified	controller.	It’ll	also	name	these	routes	appropriately;	for	example,	the
index()	method	on	the	tasks	resource	controller	will	be	named	tasks.index.

ARTISAN	ROUTE:LIST
If	you	ever	find	yourself	in	a	situation	where	you’re	wondering	what	routes	your	current	application	has	available,
there’s	a	tool	for	that:	from	the	command	line,	run	php	artisan	route:list	and	you’ll	get	a	listing	of	all	of	the
available	routes	(see	Figure	3-2).

Figure	3-2.	php	artisan	route:list	example

Route	Model	Binding
One	of	the	most	common	routing	patterns	is	that	the	first	line	of	any	controller	method	tries
to	find	the	resource	with	the	given	ID,	like	in	Example	3-27.

Example	3-27.	Getting	a	resource	for	each	route
Route::get('conferences/{id}',	function	($id)	{

				$conference	=	Conference::findOrFail($id);

});

Laravel	provides	a	feature	that	simplifies	this	pattern	called	“route	model	binding.”	This
allows	you	to	define	that	a	particular	parameter	name	(e.g.,	{conference})	will	indicate	to	the
route	resolver	that	it	should	look	up	an	Eloquent	record	with	that	ID	and	then	pass	it	in	as	the
parameter	instead	of	just	passing	the	ID.

There	are	two	kinds	of	route	model	binding:	implicit	and	custom	(or	explicit).

Implicit	Route	Model	Binding
The	simplest	way	to	use	route	model	binding	is	to	name	your	route	parameter	something
unique	to	that	model	(e.g.,	name	it	$conference	instead	of	$id),	then	typehint	that	parameter	in
the	closure/controller	method	and	use	the	same	variable	name	there.	It’s	easier	to	show	than	to
describe,	so	take	a	look	at	Example	3-28.

Example	3-28.	Using	an	explicit	route	model	binding
Route::get('conferences/{conference}',	function	(Conference	$conference)	{

				return	view('conferences.show')->with('conference',	$conference);

});

Because	the	route	parameter	({conference})	is	the	same	as	the	method	parameter
($conference),	and	the	method	parameter	is	typehinted	with	a	Conference	model	(Conference
$conference),	Laravel	sees	this	as	a	route	model	binding.	Every	time	this	route	is	visited,	the
application	will	assume	that	whatever	is	passed	into	the	URL	in	place	of	{conference}	is	an	ID
that	should	be	used	to	look	up	a	Conference,	and	then	that	resulting	model	instance	will	be
passed	in	to	your	closure	or	controller	method.

CUSTOMIZING	THE	ROUTE	KEY	FOR	AN	ELOQUENT	MODEL
Any	time	an	Eloquent	model	is	looked	up	via	a	URL	segment	(usually	because	of	route	model	binding),	the
default	column	Eloquent	will	look	it	up	by	is	its	primary	key	(ID).

To	change	the	column	your	Eloquent	model	uses	for	URL	lookups,	add	a	method	to	your	model	named
getRouteKeyName():

public	function	getRouteKeyName()

{

				return	'slug';

}

Now,	a	URL	like	conferences/{conference}	will	expect	to	get	the	slug	instead	of	the	ID,	and	will	perform	its
lookups	accordingly.

Implicit	route	model	binding	was	added	in	Laravel	5.2,	so	you	won’t	have	access	to	it	in	5.1.

Custom	Route	Model	Binding
To	manually	configure	route	model	bindings,	add	a	line	like	the	one	in	Example	3-29	to	the
boot()	method	in	App\Providers\RouteServiceProvider.

Example	3-29.	Adding	a	route	model	binding
				public	function	boot(Router	$router)

				{

								//	Just	allows	the	parent's	boot()	method	to	still	run

								parent::boot($router);

								//	Perform	the	binding

								$router->model('event',	Conference::class);

				}

You’ve	now	defined	that	whenever	a	route	has	a	parameter	in	its	definition	named	{event},	as
demonstrated	in	Example	3-30,	the	route	resolver	will	return	an	instance	of	the	Conference
class	with	the	ID	of	that	URL	parameter.

Example	3-30.	Using	an	explicit	route	model	binding
Route::get('events/{event}',	function	(Conference	$event)	{

				return	view('events.show')->with('event',	$event);

});

Route	Caching
If	you’re	looking	to	squeeze	every	millisecond	out	of	your	load	time,	you	may	want	to	take	a
look	at	route	caching.	One	of	the	pieces	of	Laravel’s	bootstrap	that	can	take	anywhere	from	a
few	dozen	to	a	few	hundred	milliseconds	is	parsing	the	routes/*	files,	and	route	caching
speeds	up	this	process	dramatically.

To	cache	your	routes	file,	you	need	to	be	using	all	controller	and	resource	routes	(no	route
closures).	If	your	app	isn’t	using	any	route	closures,	you	can	run	php	artisan	route:cache,
Laravel	will	serialize	the	results	of	your	routes/*	files.	If	you	want	to	delete	the	cache,	run	php
artisan	route:clear.

Here’s	the	drawback:	Laravel	will	now	match	routes	against	that	cached	file	instead	of	your
actual	routes/*	files.	You	can	make	endless	changes	to	those	files,	and	they	won’t	take	effect
until	you	run	route:cache	again.	This	means	you’ll	have	to	recache	every	time	you	make	a
change,	which	introduces	a	lot	of	potential	for	confusion.

Here’s	what	I	would	recommend	instead:	since	Git	ignores	the	route	cache	file	by	default
anyway,	consider	only	using	route	caching	on	your	production	server,	and	run	the	php
artisan	route:cache	command	every	time	you	deploy	new	code	(whether	via	a	Git	post-
deploy	hook,	a	Forge	deploy	command,	or	as	a	part	of	whatever	other	deploy	system	you
use).	This	way	you	won’t	have	confusing	local	development	issues,	but	your	remote
environment	will	still	benefit	from	route	caching.

Form	Method	Spoofing
Sometimes,	you	need	to	manually	define	which	HTTP	verb	a	form	should	send	as.	HTML
forms	only	allow	for	GET	or	POST,	so	if	you	want	any	other	sort	of	verb,	you’ll	need	to
specify	that	yourself.

An	Introduction	to	HTTP	Verbs
We’ve	talked	about	the	GET	and	POST	HTTP	verbs	already.	If	you’re	not	familiar	with	HTTP
verbs,	the	other	two	most	common	ones	are	PUT	and	DELETE,	but	there’s	also	HEAD,	OPTIONS,
PATCH,	and	two	others	that	are	pretty	much	never	used	in	normal	web	development,	TRACE	and
CONNECT.

Here’s	the	quick	rundown:	GET	requests	a	resource	and	HEAD	asks	for	a	headers-only	version
of	the	GET,	POST	creates	a	resource,	PUT	overwrites	a	resource	and	PATCH	modifies	a	resource,
DELETE	deletes	a	resource,	and	OPTIONS	asks	the	server	which	verbs	are	allowed	at	this	URL.

HTTP	Verbs	in	Laravel
As	we’ve	shown	already,	you	can	define	which	verbs	a	route	will	match	in	the	route	definition
using	Route::get(),	Route::post(),	Route::any(),	or	Route::match().	You	can	also	match
with	Route::patch(),	Route::put(),	and	Route::delete().

But	how	does	one	send	a	request	other	than	GET	with	a	web	browser?	First,	the	method	attribute
in	an	HTML	form	determines	its	HTTP	verb:	if	your	form	has	a	method	of	"GET",	it	will
submit	via	query	parameters	and	a	GET	method;	if	the	form	has	a	method	of	"POST",	it	will
submit	via	the	post	body	and	a	POST	method.

JavaScript	frameworks	make	it	easy	to	send	other	requests,	like	DELETE	and	PATCH.	But	if	you
find	yourself	needing	to	submit	HTML	forms	in	Laravel	with	verbs	other	than	GET	or	POST,
you’ll	need	to	use	form	method	spoofing,	which	is	spoofing	the	HTTP	method	in	an	HTML
form.

HTTP	Method	Spoofing	in	HTML	Forms
To	inform	Laravel	that	the	form	you’re	currently	submitting	should	be	treated	as	something
other	than	POST,	add	a	hidden	variable	named	_method	with	the	value	of	either	"PUT",	"PATCH",
or	"DELETE",	and	Laravel	will	match	and	route	that	form	submission	as	if	it	were	actually	a
request	with	that	verb.

The	form	in	Example	3-31,	since	it’s	passing	Laravel	the	method	of	"DELETE",	will	match
routes	defined	with	Route::delete()	but	not	those	with	Route::post().

Example	3-31.	Form	method	spoofing
<form	action="/tasks/5"	method="POST">

				<input	type="hidden"	name="_method"	value="DELETE">

</form>

CSRF	Protection
If	you’ve	tried	to	create	and	submit	a	form	in	a	Laravel	application	already	—	including	the
form	in	Example	3-31	—	you’ve	likely	run	into	the	dreaded	TokenMismatchException.

By	default,	all	routes	in	Laravel	except	“read-only”	routes	(those	using	GET,	HEAD,	or
OPTIONS)	are	protected	against	cross-site	request	forgery	(CSRF)	attacks	by	requiring	a	token,
in	the	form	of	an	input	named	_token,	to	be	passed	along	with	each	request.	This	token	is
generated	at	the	start	of	every	session,	and	every	non–read-only	route	compares	the	submitted
_token	against	the	session	token.

WHAT	IS	CSRF?
A	cross-site	request	forgery	is	when	one	website	pretends	to	be	another.	The	goal	is	for	someone	to	hijack	your
users’	access	to	your	website,	by	submitting	forms	from	their	website	to	your	website	via	the	logged-in	user’s
browser.

The	best	way	around	CSRF	attacks	is	to	protect	all	inbound	routes	—	POST,	DELETE,	etc.	—	with	a	token,	which
Laravel	does	out	of	the	box.

You	have	two	options	for	getting	around	this.	The	first,	and	preferred,	method	is	to	add	the
_token	input	to	each	of	your	submissions.	In	HTML	forms,	that’s	simple;	look	at	Example	3-
32.

Example	3-32.	CSRF	tokens
<form	action="/tasks/5"	method="POST">

				<?php	echo	csrf_field();	?>

				<!--	or:	-->

				<input	type="hidden"	name="_token"	value="<?php	echo	csrf_token();	?>">

</form>

In	JavaScript	applications,	it’s	a	bit	more	work,	but	not	much.	The	most	common	solution	for
sites	using	JavaScript	frameworks	is	to	store	the	token	on	every	page	in	a	<meta>	tag	like	this
one:

<meta	name="csrf-token"	content="<?php	echo	csrf_token();	?>"	id="token">

Storing	the	token	in	a	<meta>	tag	makes	it	easy	to	bind	it	to	the	correct	HTTP	header,	which
you	can	do	once	globally	for	all	requests	from	your	JavaScript	framework,	like	in
Example	3-33.

Example	3-33.	Globally	binding	a	header	for	CSRF
//	in	jQuery:

$.ajaxSetup({

				headers:	{

								'X-CSRF-TOKEN':	$('meta[name="csrf-token"]').attr('content')

				}

});

//	in	Vue:

Vue.http.interceptors.push((request,	next)	=>	{

				request.headers['X-CSRF-TOKEN']	=

								document.querySelector('#token').getAttribute('content');

				next();

});

Laravel	will	check	the	X-CSRF-TOKEN	on	every	request,	and	valid	tokens	passed	there	will
mark	the	CSRF	protection	as	satisfied.

Note	that	the	Vue	syntax	for	CSRF	in	this	example	is	not	necessary	if	you’re	working	with	the
5.3	Vue	bootstrap;	it	already	does	this	work	for	you.

Redirects
So	far	the	only	things	we’ve	returned	from	a	controller	method	or	route	definition	have	been
views.	But	there	are	a	few	other	structures	we	can	return	to	give	the	browser	instructions	on
how	to	behave.

First,	let’s	cover	the	redirect.	There	are	two	common	ways	to	generate	a	redirect;	we’ll	use
the	redirect	global	helper	here,	but	you	may	prefer	the	facade.	Both	create	an	instance	of
Illuminate\Http\RedirectResponse,	perform	some	convenience	methods	on	it,	and	then
return	it.	You	can	also	do	this	manually,	but	you’ll	have	to	do	a	little	more	work	yourself.
Take	a	look	at	Example	3-34	to	see	a	few	ways	you	can	return	a	redirect.

Example	3-34.	Different	ways	to	return	a	redirect
//	Using	the	global	helper	to	generate	a	redirect	response

Route::get('redirect-with-helper',	function	()	{

				return	redirect()->to('login');

});

//	Using	the	global	helper	shortcut

Route::get('redirect-with-helper-shortcut',	function	()	{

				return	redirect('login');

});

//	Using	the	facade	to	generate	a	redirect	response

Route::get('redirect-with-facade',	function	()	{

				return	Redirect::to('login');

});

Note	that	the	redirect()	helper	exposes	the	same	methods	as	the	Redirect	facade,	but	it	also
has	a	shortcut;	if	you	pass	parameters	directly	to	the	helper,	instead	of	chaining	methods	after
it,	it’s	a	shortcut	to	the	to()	redirect	method.

redirect()->to()
The	method	signature	for	the	to()	method	for	redirects	looks	like	this:

function	to($to	=	null,	$status	=	302,	$headers	=	[],	$secure	=	null)

$to	is	a	valid	internal	path;	$status	is	the	HTTP	status	(defaulting	to	302	FOUND);	$headers
allows	you	to	define	which	HTTP	headers	to	send	along	with	your	redirect;	and	$secure
allows	you	to	override	the	default	choice	of	http	versus	https	(which	is	normally	set	based
on	your	current	request	URL).	Example	3-35	shows	another	example	of	its	use.

Example	3-35.	redirect()->to()
Route::get('redirect',	function	()	{

				return	redirect()->to('home');

				//	or	same,	using	the	shortcut:

				return	redirect('home');

});

redirect()->route()
The	route()	method	is	the	same	as	the	to()	method,	but	rather	than	pointing	to	a	particular
path,	it	points	to	a	particular	route	name	(see	Example	3-36).

Example	3-36.	redirect()->route()
Route::get('redirect',	function	()	{

				return	redirect()->route('conferences.index');

});

Note	that,	since	some	route	names	require	parameters,	its	parameter	order	is	a	little	different.
route()	has	an	optional	second	parameter	for	the	route	parameters:

function	route($to	=	null,	$parameters	=	[],	$status	=	302,	$headers	=	[])

So,	using	it	might	look	a	little	like	Example	3-37.

Example	3-37.	redirect()->route()	with	parameters
Route::get('redirect',	function	()	{

				return	redirect()->route('conferences.show',	['conference'	=>	99]);

});

redirect()->back()
Because	of	some	of	the	built-in	conveniences	of	Laravel’s	session	implementation,	your
application	will	always	have	knowledge	of	what	the	user ’s	previously	visited	page	was.	That
opens	up	the	opportunity	for	a	redirect()->()	redirect,	which	simply	redirects	the	user	to
whatever	page	she	came	from.	There’s	also	a	global	shortcut	for	this:	back().

Other	Redirect	Methods
The	redirect	service	provides	other	methods	that	are	less	commonly	used,	but	still	available:

home()	redirects	to	a	route	named	home.

refresh()	redirects	to	the	same	page	the	user	is	currently	on.

away()	allows	for	redirecting	to	an	external	URL	without	the	default	URL	validation.

secure()	is	like	to()	with	the	secure	parameter	set	to	"true".

action()	allows	you	to	link	to	a	controller	and	method	like	this:	redirect()-
>action('MyController@myMethod').

guest()	is	used	internally	by	the	auth	system	(discussed	in	Chapter	9);	when	a	user	visits
a	route	he’s	not	authenticated	for,	this	captures	the	“intended”	route	and	then	redirects	the
user	(usually	to	a	login	page).

intended()	is	also	used	internally	by	the	auth	system;	after	a	successful	authentication,
this	grabs	the	“intended”	URL	stored	by	the	guest()	method	and	redirects	the	user	there.

redirect()->with()
When	you’re	redirecting	users	to	different	pages,	you	often	want	to	pass	certain	data	along
with	them.	You	could	manually	flash	the	data	to	the	session,	but	Laravel	has	some	convenience
methods	to	help	you	with	that.

Most	commonly,	you	can	pass	along	either	an	array	of	keys	and	values	or	a	single	key	and
value	using	with(),	like	in	Example	3-38.

Example	3-38.	Redirect	with	data
Route::get('redirect-with-key-value',	function	()	{

				return	redirect('dashboard')

								->with('error',	true);

});

Route::get('redirect-with-array',	function	()	{

				return	redirect('dashboard')

								->with(['error'	=>	true,	'message'	=>	'Whoops!']);

});

CHAINING	METHODS	ON	REDIRECTS
As	with	many	other	facades,	most	calls	to	the	Redirect	facade	can	accept	fluent	method	chains,	like	the	with()
calls	in	Example	3-38.	Learn	more	about	fluency	in	“What	Is	a	Fluent	Interface?”.

You	can	also	use	withInput(),	as	in	Example	3-39,	to	redirect	with	the	user ’s	form	input
flashed;	this	is	most	common	in	the	case	of	a	validation	error,	where	you	want	to	send	the
user	back	to	the	form	she	just	came	from.

Example	3-39.	Redirect	with	form	input
Route::get('form',	function	()	{

				return	view('form');

});

Route::post('form',	function	()	{

				return	redirect('form')

								->withInput()

								->with(['error'	=>	true,	'message'	=>	'Whoops!']);

});

The	easiest	way	to	get	the	flashed	input	that	was	passed	with	withInput()	is	using	the	old()
helper,	which	can	be	used	to	get	all	old	input	(old())	or	just	the	value	for	a	particular	key
(old('username'),	with	the	second	parameter	as	the	default	if	there	is	no	old	value).	You’ll
commonly	see	this	in	views,	which	allows	this	HTML	to	be	used	both	on	the	“create”	and	the
“edit”	view	for	this	form:

<input	name="username"	value="<?=

				old('username',	'Default	username	instructions	here');

?>">

Speaking	of	validation,	there	is	also	a	useful	method	for	passing	errors	along	with	a	redirect
response:	withErrors().	You	can	pass	it	any	“provider”	of	errors,	which	may	be	an	error
string,	an	array	of	errors,	or,	most	commonly,	an	instance	of	the	Illuminate	Validator,	which
we’ll	cover	in	Chapter	10.	Example	3-40	shows	an	example	of	its	use.

Example	3-40.	Redirect	with	errors
Route::post('form',	function	()	{

				$validator	=	Validator::make($request->all()),	$this->validationRules);

				if	($validator->fails())	{

								return	redirect('form')

												->withErrors($validator)

												->withInput();

				}

});

withErrors()	automatically	shares	an	$errors	variable	with	the	views	of	the	page	it’s
redirecting	to,	for	you	to	handle	however	you’d	like.

THE	VALIDATE()	SHORTCUT	IN	CONTROLLER	METHODS
Like	how	Example	3-40	looks?	If	you’re	defining	your	routes	in	a	controller,	there’s	a	simple	and	powerful	tool
that	cleans	up	that	code.	Read	more	in	“validate()	in	the	Controller	Using	ValidatesRequests”.

Aborting	the	Request
Aside	from	returning	views	and	redirects,	the	most	common	way	to	exit	a	route	is	to	abort.
There	are	a	few	globally	available	methods	(abort(),	abort_if(),	and	abort_unless()),
which	optionally	take	HTTP	status	codes,	a	message,	and	a	headers	array	as	parameters.

As	Example	3-41	shows,	abort_if()	and	abort_unless()	take	a	first	parameter	that	is
evaluated	for	its	truthiness,	and	perform	the	abort	depending	on	the	result.

Example	3-41.	403	Forbidden	aborts
Route::post('something-you-cant-do',	function	(Illuminate\Http\Request)	{

				abort(403,	'You	cannot	do	that!');

				abort_unless($request->has('magicToken'),	403);

				abort_if($request->user()->isBanned,	403);

});

Custom	Responses
There	are	a	few	other	options	available	for	us	to	return,	so	let’s	go	over	the	most	common
responses	after	views,	redirects,	and	aborts.	Just	like	with	redirects,	you	can	either	use	the
response()	helper	or	the	Response	facade	to	run	these	methods	on.

response()->make()
If	you	want	to	create	an	HTTP	response	manually,	just	pass	your	data	into	the	first	parameter
of	response()->make():	e.g.,	return	response()->make('Hello,	World!').	Once	again,	the
second	parameter	is	the	HTTP	status	code	and	the	third	is	your	headers.

response()->json()	and	->jsonp()
To	create	a	JSON-encoded	HTTP	response	manually,	pass	your	JSON-able	content	(arrays,
collections,	or	whatever	else)	to	the	json()	method:	e.g.,	return	response()-
>json(User::all());.	It’s	just	like	make(),	except	it	json_encodes	your	content	and	sets	the
appropriate	headers.

response()->download()	and	->file()
To	send	a	file	for	the	end	user	to	download,	pass	either	an	SplFileInfo	instance	or	a	string
filename	to	download(),	with	an	optional	second	parameter	of	the	filename:	e.g.,	return
response()->download('file501751.pdf',	'myFile.pdf').

To	display	the	same	file	in	the	browser	(if	it’s	a	PDF	or	an	image	or	something	else	the
browser	can	handle),	use	response()->file()	instead,	which	takes	the	same	parameters.

Testing
In	some	other	communities,	the	idea	of	unit	testing	controller	methods	is	common,	but	within
Laravel	(and	most	of	the	PHP	community),	it’s	most	common	to	rely	on	application	testing	to
test	the	functionality	of	routes.

For	example,	to	verify	that	a	POST	route	works	correctly,	we	can	write	a	test	like	Example	3-
42.

Example	3-42.	Writing	a	simple	POST	route	test
//	AssignmentTest.php

public	function	test_post_creates_new_assignment()

{

				$this->post('/assignments',	[

								'title'	=>	'My	great	assignment'

]);

				$this->seeInDatabase('assignments',	[

								'title'	=>	'My	great	assignment'

]);

}

Did	we	directly	call	the	controller	methods?	No.	But	we	ensured	that	the	goal	of	this	route	—
to	receive	a	POST	and	save	its	important	information	to	the	database	—	was	met.

You	can	also	use	similar	syntax	to	visit	a	route	and	verify	that	certain	text	shows	up	on	the
page,	or	that	clicking	certain	buttons	does	certain	things	(see	Example	3-43).

Example	3-43.	Writing	a	simple	GET	route	test
//	AssignmentTest.php

public	function	test_list_page_shows_all_assignments()

{

				$assignment	=	Assignment::create([

								'title'	=>	'My	great	assignment'

]);

				$this->visit('assignments')

								->dee(['My	great	assignment']);

}

TL;DR
Laravel’s	routes	are	defined	in	routes/web.php	and	routes/api.php,	where	you	can	define	the
expected	path	for	each	route,	which	segments	are	static	and	which	are	parameters,	which
HTTP	verbs	can	access	the	route,	and	how	to	resolve	it.	You	can	also	attach	middleware	to
routes,	group	them,	and	give	them	names.

What	is	returned	from	the	route	closure	or	controller	method	dictates	how	Laravel	responds
to	the	user.	If	it’s	a	string	or	a	view,	it’s	presented	to	the	user;	if	it’s	other	sorts	of	data,	it’s
converted	to	JSON	and	presented	to	the	user;	and	if	it’s	a	redirect,	it	forces	a	redirect.

Laravel	provides	a	series	of	tools	and	conveniences	to	simplify	common	routing-related	tasks
and	structures.	These	include	resource	controllers,	route	model	binding,	and	form	method
spoofing.

Chapter	4.	Blade	Templating

Compared	to	most	other	backend	languages,	PHP	actually	functions	relatively	well	as	a
templating	language.	But	it	has	its	shortcomings,	and	it’s	also	just	ugly	to	be	using	<?php
inline	all	over	the	place,	so	you	can	expect	most	modern	frameworks	to	offer	a	templating
language.

Laravel	offers	a	custom	templating	engine	called	Blade,	which	is	inspired	by	.NET’s	Razor
engine.	It	boasts	a	concise	syntax,	a	shallow	learning	curve,	a	powerful	and	intuitive
inheritance	model,	and	easy	extensibility.

For	a	quick	look	at	what	writing	Blade	looks	like,	check	out	Example	4-1.

Example	4-1.	Blade	samples
<h1>{{	$group->title	}}</h1>

{!!	$group->heroImageHtml()	!!}

@forelse	($users	as	$user)

				•	{{	$user->first_name	}}	{{	$user->last_name	}}

@empty

				No	users	in	this	group.

@endforelse

As	you	can	see,	Blade	introduces	a	convention	in	which	its	custom	tags,	called	“directives,”
are	prefixed	with	an	@.	You’ll	use	directives	for	all	of	your	control	structures	and	also	for
inheritance	and	any	custom	functionality	you	want	to	add.

Blade’s	syntax	is	clean	and	concise,	so	at	its	core	it’s	just	more	pleasant	and	tidy	to	work	with
than	the	alternatives.	But	the	moment	you	need	anything	of	any	complexity	in	your	templates
—	nested	inheritance,	complex	conditionals,	or	recursion	—	Blade	starts	to	really	shine.	Just
like	the	best	Laravel	components,	it	takes	complex	application	requirements	and	makes	them
easy	and	accessible.

Additionally,	since	all	Blade	syntax	is	compiled	into	normal	PHP	code	and	then	cached,	it’s
fast	and	it	allows	you	to	use	native	PHP	in	your	Blade	files	if	you	want.	However,	I’d
recommmend	avoiding	usage	of	PHP	if	at	all	possible	—	usually	if	you	need	to	do	anything
that	you	can’t	do	with	Blade	or	a	custom	Blade	directive,	it	doesn’t	belong	in	the	template.

USING	TWIG	WITH	LARAVEL
Unlike	many	other	Symfony-based	frameworks,	Laravel	doesn’t	use	Twig	by	default.	But	if	you’re	just	in	love
with	Twig,	there’s	a	Twig	Bridge	package	that	makes	it	easy	to	use	Twig	instead	of	Blade.

https://github.com/rcrowe/TwigBridge

Echoing	Data
As	you	can	see	in	Example	4-1,	{{	and	}}	are	used	to	wrap	sections	of	PHP	that	you’d	like	to
echo.	{{	$variable	}}	is	similar	to	<?=	$variable	?>	in	plain	PHP.

It’s	different	in	one	way,	however,	and	you	might’ve	guessed	this	already:	Blade	escapes	all
echoes	by	default	using	PHP’s	htmlentities()	to	protect	your	users	from	malicious	script
insertion.	That	means	{{	$variable	}}	is	functionally	equivalent	to	<?=
htmlentities($variable)	?>.	If	you	want	to	echo	without	the	escaping,	use	{!!	and	!!}
instead.

{{AND	}}	WHEN	USING	A	FRONTEND	TEMPLATING	FRAMEWORK

You	might’ve	noticed	that	the	echo	syntax	for	Blade	({{	}})	is	similar	to	the	echo	syntax	for	many	frontend	frameworks.
So,	how	does	Laravel	know	when	you’re	writing	Blade	versus	Handlebars?

Blade	will	ignore	any	{{	that’s	prefaced	with	an	@.	So,	it	will	parse	the	first	of	the	following	examples,	but	the	second
will	be	echoed	out	directly:

//	Parsed	as	Blade;	the	value	of	$bladeVariable	is	echoed	to	the	view

{{	$bladeVariable	}}

//	@	is	removed,	and	"{{	handlebarsVariable	}}"	echoed	to	the	view	directly

@{{	handlebarsVariable	}}

Control	Structures
Most	of	the	control	structures	in	Blade	will	be	very	familiar.	Many	directly	echo	the	name	and
structure	of	the	same	tag	in	PHP.

There	are	a	few	convenience	helpers,	but	in	general,	the	control	structures	just	look	cleaner
than	they	would	in	PHP.

Conditionals
First,	let’s	take	a	look	at	the	control	structures	that	allow	for	logic.

@if
Blade’s	@if	($condition)	compiles	to	<?php	if	($condition):	?>.	@else,	@elseif,	and
@endif	also	compile	to	the	exact	same	syntax	in	PHP.	Take	a	look	at	Example	4-2	for	some
examples.

Example	4-2.	@if,	@else,	@elseif,	and	@endif
@if	(count($talks)	===	1)

				There	is	one	talk	at	this	time	period.

@elseif	(count($talks)	===	0)

				There	are	no	talks	at	this	time	period.

@else

				There	are	{{	count($talks)	}}	talks	at	this	time	period.

@endif

Just	like	with	the	native	PHP	conditionals,	you	can	mix	and	match	these	how	you	want.	They
don’t	have	any	special	logic;	there’s	literally	a	parser	looking	for	something	with	the	shape	of
@if	($condition)	and	replacing	it	with	the	appropriate	PHP	code.

@unless	and	@endunless
@unless,	on	the	other	hand,	is	a	new	syntax	that	doesn’t	have	a	direct	equivalent	in	PHP.	It’s
the	direct	inverse	of	@if.	@unless	($condition)	is	the	same	as	<?php	if	(!	$condition).
See	it	in	use	in	Example	4-3.

Example	4-3.	@unless	and	@endunless
@unless	($user->hasPaid())

				You	can	complete	your	payment	by	switching	to	the	payment	tab.

@endunless

Loops
Next,	let’s	take	a	look	at	the	loops.

@for,	@foreach,	and	@while
@for,	@foreach,	and	@while	work	the	same	in	Blade	as	they	do	in	PHP;	see	Examples	4-4,	4-
5,	and	4-6.

Example	4-4.	@for	and	@endfor
@for	($i	=	0;	$i	<	$talk->slotsCount();	$i++)

				The	number	is	{{	$i	}}

@endfor

Example	4-5.	@foreach	and	@endforeach
@foreach	($talks	as	$talk)

				•	{{	$talk->title	}}	({{	$talk->length	}}	minutes)

@endforeach

Example	4-6.	@while	and	@endwhile
@while	($item	=	array_pop($items))

				{{	$item->orSomething()	}}

@endwhile

@forelse
@forelse	is	a	@foreach	that	also	allows	you	to	program	in	a	fallback	if	the	object	you’re
iterating	over	is	empty.	We	saw	it	in	action	at	the	start	of	this	chapter;	Example	4-7	shows
another	example.

Example	4-7.	@forelse
@forelse	($talks	as	$talk)

				•	{{	$talk->title	}}	({{	$talk->length	}}	minutes)

@empty

				No	talks	this	day.

@endforelse

$LOOP	WITHIN	@FOREACH	AND	@FORELSE
The	@foreach	and	@forelse	directives	in	Laravel	5.3	add	one	feature	that’s	not	available	in	PHP	foreach	loops:
the	$loop	variable.	Used	within	a	@foreach	or	@forelse	loop,	this	variable	will	return	a	stdClass	object	with	the
following	properties:

index

The	0-based	index	of	the	current	item	in	the	loop;	0	would	mean	“first	item”

iteration

The	1-based	index	of	the	current	item	in	the	loop;	1	would	mean	“first	item”

remaining

How	many	items	remain	in	the	loop;	if	the	current	item	is	the	first	of	three,	this	will	be	2

count

The	count	of	items	in	the	loop

first

A	boolean	indicating	whether	this	is	the	first	item	in	the	loop

last

A	boolean	indicating	whether	this	is	the	last	item	in	the	loop

depth

How	many	“levels”	deep	this	loop	is:	1	for	a	loop,	2	for	a	loop	within	a	loop,	etc.

parent

A	reference	to	the	$loop	variable	for	the	parent	loop	item;	if	this	loop	is	within	another	@foreach	loop
otherwise,	null

Here’s	an	example	of	how	to	use	it:

@foreach	($pages	as	$page)

				{{	$loop->iteration	}}:	{{	$page->title	}}

								@if	($page->hasChildren())

								

								@foreach	($page->children()	as	$child)

												{{	$loop->parent->iteration	}}.

																{{	$loop->iteration	}}:

																{{	$child->title	}}

								@endforeach

								

								@endif

				

@endforeach

or
If	you’re	ever	unsure	whether	a	variable	is	set,	you’re	probably	used	to	checking	isset()	on
it	before	echoing	it,	and	echoing	something	else	if	it’s	not	set.	Blade	has	a	convenience	helper,
or,	that	does	this	for	you	and	lets	you	set	a	default	fallback:	{{	$title	or	"Default"	}}	will
echo	the	value	of	$title	if	it’s	set,	or	“Default”	if	not.

Template	Inheritance
Blade	provides	a	structure	for	template	inheritance	that	allows	views	to	extend,	modify,	and
include	other	views.

Here’s	how	inheritance	is	structured	with	Blade.

Defining	Sections	with	@section/@show	and	@yield
Let’s	start	with	a	top-level	Blade	layout,	like	in	Example	4-8.	This	is	the	definition	of	the
generic	page	wrapper	that	we’ll	later	place	page-specific	content	into.

Example	4-8.	Blade	layout
<!--	resources/views/layouts/master.blade.php	-->

<html>

				<head>

								<title>My	Site	|	@yield('title',	'Home	Page')</title>

				</head>

				<body>

								<div	class="container">

												@yield('content')

								</div>

								@section('footerScripts')

												<script	src="app.js"></script>

								@show

				</body>

</html>

This	looks	a	bit	like	a	normal	HTML	page,	but	you	can	see	we’ve	yielded	in	two	places	(title
and	content),	and	we’ve	defined	a	section	in	a	third	(footerScripts).

We	have	three	Blade	directives	here	that	each	look	a	little	different:	@yield('title',	'Home
Page')	alone,	@yield('content')	with	a	defined	default,	and	@section	...	@show	with	actual
content	in	it.

All	three	function	essentially	the	same.	All	three	are	defining	that	there’s	a	section	with	a
given	name	(which	is	the	first	parameter).	All	three	are	defining	that	the	section	can	be
extended	later.	And	all	three	are	defining	what	to	do	if	the	section	isn’t	extended,	either	by
providing	a	string	fallback	('Home	Page'),	no	fallback	(which	will	just	not	show	anything	if
it’s	not	extended),	or	an	entire	block	fallback	(in	this	case,	<script	src="app.js">
</script>).

What’s	different?	Well,	clearly,	@yield('content')	has	no	default	content.	But	additionally,
the	default	content	in	@yield('title')	only	will	be	shown	if	it’s	never	extended.	If	it	is
extended,	its	child	sections	will	not	have	programmatic	access	to	the	default	value.	@section
...	@show,	on	the	other	hand,	is	both	defining	a	default	and	doing	so	in	a	way	that	its	default
contents	will	be	available	to	its	children,	through	@parent.

Once	you	have	a	parent	layout	like	this,	you	can	extend	it	like	in	Example	4-9.

Example	4-9.	Extending	a	Blade	layout
<!--	resources/views/dashboard.blade.php	-->

@extends('layouts.master')

@section('title',	'Dashboard')

@section('content')

				Welcome	to	your	application	dashboard!

@endsection

@section('footerScripts')

				@parent

				<script	src="dashboard.js"></script>

@endsection

@SHOW	VERSUS	@ENDSECTION
You	may	have	noticed	that	Example	4-8	uses	@section	...	@show,	but	Example	4-9	uses	@section	...
@endsection.	What’s	the	difference?

Use	@show	when	you’re	defining	the	place	for	a	section,	in	the	parent	template.	Use	@endsection	when	you’re
defining	the	content	for	a	template	in	a	child	template.

This	child	view	will	actually	allow	us	to	cover	a	few	new	concepts	in	Blade	inheritance.

@extends
First,	with	@extends('layouts.master'),	we	define	that	this	view	should	not	be	rendered	on
its	own,	but	that	it	instead	extends	another	view.	That	means	its	role	is	to	define	the	content	of
various	sections,	but	not	to	stand	alone.	It’s	almost	more	like	a	series	of	buckets	of	content,
rather	than	an	HTML	page.	This	line	also	defines	that	the	view	it’s	extending	lives	at
resources/views/layouts/master.blade.php.

Each	file	should	only	extend	one	other	file,	and	the	@extends	call	should	be	the	first	line	of
the	file.

@section	and	@endsection
Second,	with	@section('title',	'Dashboard'),	we	provide	our	content	for	the	first	section,
title.	Since	the	content	is	so	short,	instead	of	using	@section	and	@endsection	we’re	just
using	a	shortcut.	This	allows	us	to	pass	the	content	in	as	the	second	parameter	of	@section	and
then	move	on.	If	it’s	a	bit	disconcerting	to	see	@section	without	@endsection,	you	could	just
use	the	normal	syntax.

Third,	with	@section('content')	and	on,	we	use	the	normal	syntax	to	define	the	contentsx	of
the	content	section.	We’ll	just	throw	a	little	greeting	in	for	now.	Note,	however,	that	when
you’re	using	@section	in	a	child	view,	you	end	it	with	@endsection	(or	its	alias	@stop),
instead	of	@show,	which	is	reserved	for	defining	sections	in	parent	views.

@parent
Fourth,	with	@section('footerScripts')	and	on,	we	use	the	normal	syntax	to	define	the
contents	of	the	footerScripts	section.

But	remember,	we	actually	defined	that	content	(or,	at	least,	its	“default”)	already	in	the	master
layout.	So	this	time,	we	have	two	options:	we	can	either	overwrite	the	content	from	the	parent
view,	or	we	can	add	to	it.

You	can	see	that	we	have	the	option	to	include	the	content	from	the	parent	by	using	the
@parent	directive	within	the	section.	If	we	didn’t,	the	content	of	this	section	would	entirely
overwrite	anything	defined	in	the	parent	for	this	section.

@include
Now	that	we’ve	established	the	basics	of	inheritance,	there	are	a	few	more	tricks	we	can
perform.

What	if	we’re	in	a	view	and	want	to	pull	in	another	view?	Maybe	we	have	a	call-to-action
“Sign	up”	button	that	we	want	to	re-use	around	the	site.	And	maybe	we	want	to	customize	its
button	text	every	time	we	use	it.	Take	a	look	at	Example	4-10.

Example	4-10.	Including	view	partials	with	@include
<!--	resources/views/home.blade.php	-->

<div	class="content"	data-page-name="{{	$pageName	}}">

				<p>Here's	why	you	should	sign	up	for	our	app:	It's	Great.</p>

				@include('sign-up-button',	['text'	=>	'See	just	how	great	it	is'])

</div>

<!--	resources/views/sign-up-button.blade.php	-->

				<i	class="exclamation-icon"></i>	{{	$text	}}

@include	pulls	in	the	partial	and,	optionally,	passes	data	into	it.	Note	that	not	only	can	you
explicitly	pass	data	to	an	include	via	the	second	parameter	of	@include,	but	you	can	also
reference	any	variables	within	the	included	file	that	are	available	to	the	including	view
($pageName,	in	this	example).	Once	again,	you	can	do	whatever	you	want,	but	I	would
recommend	you	consider	always	explicitly	passing	every	variable	that	you	intend	to	use,	just
for	clarity.

@each
You	can	probably	imagine	some	circumstances	in	which	you’d	need	to	loop	over	an	array	or
collection	and	@include	a	partial	for	each	item.	There’s	a	directive	for	that:	@each.

Let’s	say	we	have	a	sidebar	composed	of	modules,	and	we	want	to	include	multiple	modules,
each	with	a	different	title.	Take	a	look	at	Example	4-11.

Example	4-11.	Using	view	partials	in	a	loop	with	@each
<!--	resources/views/sidebar.blade.php	-->

<div	class="sidebar">

				@each('partials.module',	$modules,	'module',	'partials.empty-module')

</div>

<!--	resources/views/partials/module.blade.php	-->

<div	class="sidebar-module">

				<h1>{{	$module->title	}}</h1>

</div>

<!--	resources/views/partials/empty-module.blade.php	-->

<div	class="sidebar-module">

				No	modules	:(

</div>

Consider	that	@each	syntax.	The	first	parameter	is	the	name	of	the	view	partial.	The	second	is
the	array	or	collection	to	iterate	over.	The	third	is	the	variable	name	that	each	item	(in	this
case,	each	element	in	the	$modules	array)	will	be	passed	to	the	view	as.	And	the	optional
fourth	parameter	is	the	view	to	show	if	the	array	or	collection	is	empty	(or,	optionally,	you
can	pass	a	string	in	here	that	will	be	used	as	your	template).

View	Composers	and	Service	Injection
As	we	covered	in	Chapter	3,	it’s	simple	to	pass	data	to	our	views	from	the	route	definition
(see	Example	4-12).

Example	4-12.	Reminder	on	how	to	pass	data	to	views
Route::get('passing-data-to-views',	function	()	{

				return	view('dashboard')

								->with('key',	'value');

});

There	are	times,	however,	when	you	will	find	yourself	passing	the	same	data	over	and	over	to
multiple	views.	Or,	you	might	find	yourself	using	a	header	partial	or	something	similar	that
requires	some	data;	will	you	now	have	to	pass	that	data	in	from	every	route	definition	that
might	ever	load	that	header	partial?

Binding	Data	to	Views	Using	View	Composers
Thankfully,	there’s	a	simpler	way.	The	solution	is	called	a	view	composer,	and	it	allows	you
to	define	that	any	time	a	particular	view	loads,	it	should	have	certain	data	passed	to	it	—
without	the	route	definition	having	to	pass	that	data	in	explicitly.

Let’s	say	you	have	a	sidebar	on	every	page,	which	is	defined	in	a	partial	named
partials.sidebar	(resources/views/partials/sidebar.blade.php)	and	then	included	on	every
page.	This	sidebar	shows	a	list	of	the	last	seven	posts	that	were	published	on	your	site.	If	it’s
on	every	page,	every	route	definition	would	normally	have	to	grab	that	list	and	pass	it	in,	like
in	Example	4-13.

Example	4-13.	Passing	sidebar	data	in	from	every	route
Route::get('home',	function	()	{

				return	view('home')

								->with('posts',	Post::recent());

});

Route::get('about',	function	()	{

				return	view('about')

								->with('posts',	Post::recent());

});

That	could	get	annoying	quickly.	Instead,	we’re	going	to	use	view	composers	to	“share”	that
variable	with	a	prescribed	set	of	views.	We	can	do	this	a	few	ways,	so	let’s	start	simple	and
move	up.

Sharing	a	variable	globally
First,	the	simplest	option:	just	globally	“share”	a	variable	with	every	view	in	your	application
like	in	Example	4-14.

Example	4-14.	Sharing	a	variable	globally
//	Some	service	provider

public	function	boot()

{

				...

				view()->share('posts',	Post::recent());

}

If	you	want	to	use	view()->share(),	the	best	place	would	be	the	boot()	method	of	a	service
provider	so	that	the	binding	runs	on	every	page	load.	You	can	create	a	custom
ViewComposerServiceProvider	(see	Chapter	11	for	more	about	service	providers),	but	for
now	just	put	it	in	App\Providers\AppServiceProvider	in	the	boot()	method.

Using	view()->share()	makes	the	variable	accessible	to	every	view	in	the	entire	application,
however,	so	it	might	be	overkill.

Closure-based	view	composers
The	next	option	is	to	use	a	closure-based	view	composer	to	share	variables	with	a	single	view,
like	in	Example	4-15.

Example	4-15.	Creating	a	closure-based	view	composer
view()->composer('partials.sidebar',	function	($view)	{

				$view->with('posts',	Post::recent());

});

As	you	can	see,	we’ve	defined	the	name	of	the	view	we	want	it	shared	with	in	the	first
parameter	(partials.sidebar)	and	then	passed	a	closure	to	the	second	parameter;	in	the
closure,	we’ve	used	$view->with()	to	share	a	variable,	but	now	only	with	a	specific	view.

VIEW	COMPOSERS	FOR	MULTIPLE	VIEWS
Anywhere	a	view	composer	is	binding	to	a	particular	view	(like	in	Example	4-15,	which	binds	to
partials.sidebar),	you	can	pass	an	array	of	view	names	instead	to	bind	to	multiple	views.

You	can	also	use	an	asterisk	in	the	view	path,	as	in	partials.*,	tasks.*,	or	just	*:

view()->composer(

				['partials.header',	'partials.footer'],

				function	()	{

								$view->with('posts',	Post::recent());

				}

);

view()->composer('partials.*',	function	()	{

				$view->with('posts',	Post::recent());

});

Class-based	view	composers
Finally,	the	most	flexible	but	also	most	complex	option	is	to	create	a	dedicated	class	for	your
view	composer.

First,	let’s	create	the	view	composer	class.	There’s	no	formally	defined	place	for	view
composers	to	live,	but	the	docs	recommend	App\Http\ViewComposers.	So,	let’s	create
App\Http\ViewComposers\RecentPostsComposer	like	in	Example	4-16.

Example	4-16.	A	view	composer
<?php

namespace	App\Http\ViewComposers;

use	App\Post;

use	Illuminate\Contracts\View\View;

class	RecentPostsComposer

{

				private	$posts;

				public	function	__construct(Post	$posts)

				{

								$this->posts	=	$posts;

				}

				public	function	compose(View	$view)

				{

								$view->with('posts',	$this->posts->recent());

				}

}

As	you	can	see,	we’re	injecting	the	Post	model	(typehinted	constructor	parameters	of	view
composers	will	be	automatically	injected;	see	Chapter	11	for	more	on	the	container	and
dependency	injection).	Note	that	we	could	skip	the	private	$posts	and	the	constructor
injection	and	just	use	Post::recent()	in	the	compose()	method	if	we	wanted.	Then,	when	this
composer	is	called,	it	runs	the	compose()	method,	in	which	we	bind	the	posts	variable	to	the
result	of	running	the	recent()	method.

Like	the	other	methods	of	sharing	variables,	this	view	composer	needs	to	have	a	binding
somewhere.	Again,	you’d	likely	create	a	custom	ViewComposerServiceProvider,	but	for	now,
as	seen	in	Example	4-17,	we’ll	just	put	it	in	the	boot()	method	of
App\Providers\AppServiceProvider.

Example	4-17.	Registering	a	view	composer	in	AppServiceProvider
//	AppServiceProvider

public	function	boot()

{

				...

				view()->composer(

								'partials.sidebar',

								\App\Http\ViewComposers\RecentPostsComposer::class

);

}

Note	that	this	binding	is	the	same	as	a	closure-based	view	composer,	but	instead	of	passing	a
closure,	we’re	passing	the	class	name	of	our	view	composer.	Now,	every	time	Blade	renders
the	partials.sidebar	view,	it’ll	automatically	run	our	provider	and	pass	the	view	a	posts
variable	set	to	the	results	of	the	recent()	method	on	our	Post	model.

Blade	Service	Injection
There	are	three	primary	types	of	data	we’re	most	likely	to	inject	into	a	view:	collections	of
data	to	iterate	over,	single	objects	that	we’re	displaying	on	the	page,	and	services	that	generate
data	or	views.

With	a	service,	the	pattern	will	most	likely	look	like	Example	4-18,	where	we	inject	an
instance	of	our	analytics	service	into	the	route	definition	by	typehinting	it	in	the	route’s
method	signature,	and	then	pass	it	into	the	view.

Example	4-18.	Injecting	services	into	a	view	via	the	route	definition	constructor
Route::get('backend/sales',	function	(AnalyticsService	$analytics)	{

				return	view('backend.sales-graphs')

								->with('analytics',	$analytics);

});

Just	as	with	view	composers,	Blade’s	service	injection	offers	a	convenient	shortcut	to	reduce
duplication	in	your	route	definitions.	Normally,	the	content	of	a	view	using	our	analytics
service	might	look	like	Example	4-19.

Example	4-19.	Using	an	injected	navigation	service	in	a	view
<div	class="finances-display">

					{{	$analytics->getBalance()	}}	/	{{	$analytics->getBudget()	}}

</div>

Blade	service	injection	makes	it	easy	to	inject	an	instance	of	a	class	outside	of	the	container
directly	from	the	view,	like	in	Example	4-20.

Example	4-20.	Injecting	a	service	directly	into	a	view
@inject('analytics',	'App\Services\Analytics')

<div	class="finances-display">

					{{	$analytics->getBalance()	}}	/	{{	$analytics->getBudget()	}}

</div>

As	you	can	see,	this	@inject	directive	has	actually	made	an	$analytics	variable	available,
which	we’re	using	later	in	our	view.

The	first	parameter	of	@inject	is	the	name	of	the	variable	you’re	injecting,	and	the	second
parameter	is	the	class	or	interface	that	you	want	to	inject	an	instance	of.	This	is	resolved	just
like	when	you	type	hint	a	dependency	in	a	constructor	elsewhere	in	Laravel;	if	you’re
unfamiliar	with	how	that	works,	go	to	Chapter	11	to	learn	more.

Just	like	view	composers,	Blade	service	injection	makes	it	easy	to	make	certain	data	or
functionality	available	to	every	instance	of	a	view,	without	having	to	inject	it	via	the	route
definition	every	time.

Custom	Blade	Directives
All	of	the	built-in	syntax	of	Blade	that	we’ve	covered	so	far	—	@if,	@unless,	and	so	on	—	are
called	directives.	Each	Blade	directive	is	a	mapping	between	a	pattern	(e.g.,	@if
($condition))	and	a	PHP	output	(e.g.,	<?php	if	($condition):	?>).

Directives	aren’t	just	for	the	core;	you	can	actually	create	your	own.	You	might	think
directives	are	good	for	making	little	shortcuts	to	bigger	pieces	of	code	—	for	example,	using
@button('buttonName')	and	having	it	expand	to	a	larger	set	of	button	HTML.	This	isn’t	a
terrible	idea,	but	for	simple	code	expansion	like	this	you	might	be	better	off	including	a	view
partial.

I’ve	found	custom	directives	to	be	the	most	useful	when	they	simplify	some	form	of	repeated
logic.	Say	we’re	tired	of	having	to	wrap	our	code	with	@if	(auth()->guest())	(to	check	if	a
user	is	logged	in	or	not)	and	we	want	a	custom	@ifGuest	directive.	As	with	view	composers,
it	might	be	worth	having	a	custom	service	provider	to	register	these,	but	for	now	let’s	just	put
it	in	the	boot()	method	of	App\Providers\AppServiceProvider.	Take	a	look	at	Example	4-21
to	see	what	this	binding	will	look	like.

Example	4-21.	Binding	a	custom	Blade	directive
//	AppServiceProvider

public	function	boot()

{

				Blade::directive('ifGuest',	function	()	{

								return	"<?php	if	(auth()->guest()):	?>";

				});

}

We’ve	now	registered	a	custom	directive,	@ifGuest,	which	will	be	replaced	with	the	PHP	code
<?php	if	(auth()->guest()):	?>.

This	might	feel	strange.	You’re	writing	a	string	that	will	be	returned	and	then	executed	as	PHP.
But	what	this	means	is	that	you	can	now	take	the	complex,	or	ugly,	or	unclear,	or	repetitive
aspects	of	your	PHP	templating	code	and	hide	them	behind	clear,	simple,	and	expressive
syntax.

CUSTOM	DIRECTIVE	RESULT	CACHING
You	might	be	tempted	to	do	some	logic	to	make	your	custom	directive	faster	by	performing	an	operation	in	the
binding	and	then	embedding	the	result	within	the	returned	string:

Blade::directive('ifGuest',	function	()	{

				//	Antipattern!	Do	not	copy.

				$ifGuest	=	auth()->guest();

				return	"<?php	if	({$ifGuest}):	?>";

});

The	problem	with	this	idea	is	that	it	assumes	this	directive	will	be	re-created	on	every	page	load.	However,	Blade
caches	aggressively,	so	you’re	going	to	find	yourself	in	a	bad	spot	if	you	try	this.

Parameters	in	Custom	Blade	Directives
What	if	you	want	to	check	a	condition	in	your	custom	logic?	Check	out	Example	4-22.

Example	4-22.	Creating	a	Blade	directive	with	parameters
//	Binding

Blade::directive('newlinesToBr',	function	($expression)	{

				return	"<?php	echo	nl2br({$expression});	?>";

});

//	In	use

<p>@newlinesToBr($message->body)</p>

The	$expression	parameter	received	by	the	closure	represents	whatever ’s	within	the
parentheses.	As	you	can	see,	we	then	generate	a	valid	PHP	code	snippet	and	return	it.

$EXPRESSION	PARAMETER	SCOPING	BEFORE	LARAVEL	5.3
Before	Laravel	5.3,	the	$expression	parameter	also	included	the	parentheses	themselves.	So,	in	Example	4-22,
$expression	(which	is	$message->body	in	Laravel	5.3	and	later)	would	have	instead	been	($message->body),	and
we	would’ve	had	to	write	<?php	echo	nl2br{$expression};	?>.

If	you	find	yourself	constantly	writing	the	same	conditional	logic	over	and	over,	you	should
consider	a	Blade	directive.

Example:	Using	Custom	Blade	Directives	for	a	Multitenant	App
So,	let’s	imagine	we’re	building	an	application	that	supports	multitenancy,	which	means	users
might	be	visiting	the	site	from	www.myapp.com,	client1.myapp.com,	client2.myapp.com,	or
elsewhere.

Suppose	we	have	written	a	class	to	encapsulate	some	of	our	multitenancy	logic	and	named	it
Context.	This	class	will	capture	information	and	logic	about	the	context	of	the	current	visit,
such	as	who	the	authenticated	user	is	and	whether	the	user	is	visiting	the	public	website	or	a
client	subdomain.

We’ll	probably	frequently	resolve	that	Context	class	in	our	views	and	perform	conditionals
on	it,	like	in	Example	4-23.	The	app('context')	is	a	shortcut	to	get	an	instance	of	a	class
from	the	container,	which	we’ll	learn	more	about	in	Chapter	11.

Example	4-23.	Conditionals	on	context	without	a	custom	Blade	directive
@if	(app('context')->isPublic())

				©	Copyright	MyApp	LLC

@else

				©	Copyright	{{	app('context')->client->name	}}

@endif

What	if	we	could	simplify	@if	(app('context')->isPublic())	to	just	@ifPublic?	Let’s	do
it.	Check	out	Example	4-24.

Example	4-24.	Conditionals	on	context	with	a	custom	Blade	directive
//	Binding

Blade::directive('ifPublic',	function	()	{

				return	"<?php	if	(app('context')->isPublic()):	?>";

});

//	In	use

@ifPublic

				©	Copyright	MyApp	LLC

@else

				©	Copyright	{{	app('context')->client->name	}}

@endif

Since	this	resolves	to	a	simple	if	statement,	we	can	still	rely	on	the	native	@else	and	@endif
conditionals.	But	if	we	wanted,	we	could	also	create	a	custom	@elseIfClient	directive,	or	a
separate	@ifClient	directive,	or	really	whatever	else	we	want.

Testing
The	most	common	method	of	testing	views	is	through	application	testing,	meaning	that
you’re	actually	calling	the	route	that	displays	the	views	and	ensuring	the	views	have	certain
content	(see	Example	4-25).	You	can	also	click	buttons	or	submit	forms	and	ensure	that	you
are	redirected	to	a	certain	page,	or	that	you	see	a	certain	error.	(You’ll	learn	more	about
testing	in	Chapter	12.)

Example	4-25.	Testing	that	a	view	displays	certain	content
//	EventsTest.php

public	function	test_list_page_shows_all_events()

{

				$event1	=	factory(Event::class)->create();

				$event2	=	factory(Event::class)->create();

				$this->visit('events')

								->see($event1->title)

								->see($event2->title);

}

You	can	also	test	that	a	certain	view	has	been	passed	a	particular	set	of	data,	which,	if	it
accomplishes	your	testing	goals,	is	less	fragile	than	checking	for	certain	text	on	the	page.
Example	4-26	demonstrates	this	approach.

Example	4-26.	Testing	that	a	view	was	passed	certain	content
//	EventsTest.php

public	function	test_list_page_shows_all_events()

{

				$event1	=	factory(Event::class)->create();

				$event2	=	factory(Event::class)->create();

				$this->visit('events');

				$this->assertViewHas('events',	Event::all());

				$this->assertViewHasAll([

								'events'	=>	Event::all(),

								'title'	=>	'Events	Page'

]);

				$this->assertViewMissing('dogs');

}

In	5.3,	we	gained	the	ability	to	pass	a	closure	to	$assertViewHas(),	meaning	we	can	customize
how	we	want	to	check	more	complex	data	structures.	Example	4-27	illustrates	how	we	might
use	this.

Example	4-27.	Passing	a	closure	to	assertViewHas()
//	EventsTest.php

public	function	test_list_page_shows_all_events()

{

				$event1	=	factory(Event::class)->create();

				$this->visit('events/'	.	$event1->id);

				$this->assertViewHas('event',	function	($event)	use	($event1)	{

								return	$event->id	===	$event1->id;

				});

}

TL;DR
Blade	is	Laravel’s	templating	engine.	Its	primary	focus	is	a	clear,	concise,	and	expressive
syntax	with	powerful	inheritance	and	extensibility.	Its	“safe	echo”	brackets	are	{{	and	}},	its
unprotected	echo	brackets	are	{!!	and	!!},	and	it	has	a	series	of	custom	tags	called	directives
that	all	begin	with	@	(@if	and	@unless,	for	example).

You	can	define	a	parent	template	and	leave	“holes”	in	it	for	content	using	@yield	and
@section/@show.	You	can	then	teach	its	child	views	to	extend	it	using
@extends('parent.view.name'),	and	define	their	sections	using	@section/@endsection.	You
use	@parent	to	reference	the	content	of	the	block’s	parent.

View	composers	make	it	easy	to	define	that,	every	time	a	particular	view	or	subview	loads,	it
should	have	certain	information	available	to	it.	And	service	injection	allows	the	view	itself	to
request	data	straight	from	the	application	container.

Chapter	5.	Frontend	Components

Laravel	is	primarily	a	PHP	framework,	but	it	also	has	a	series	of	components	focused	on
generating	frontend	code.	Some	of	these,	like	pagination	and	message	bags,	are	PHP	helpers
that	target	the	frontend,	but	Laravel	also	provides	a	Gulp-based	build	system	called	Elixir	and
some	conventions	around	non-PHP	assets.

Since	Elixir	is	at	the	core	of	the	non-PHP	frontend	components,	let’s	start	there.

Elixir
Elixir	(not	to	be	confused	with	the	functional	programming	language)	is	a	build	tool	that
provides	a	simple	user	interface	and	a	series	of	conventions	on	top	of	Gulp.	Elixir ’s	core
feature	is	simplifying	the	most	common	Gulp	tasks	by	means	of	a	cleaner	API	and	a	series	of
naming	and	application	structure	conventions.

A	QUICK	INTRODUCTION	TO	GULP

Gulp	is	a	JavaScript	tool	designed	for	compiling	static	assets	and	coordinating	other	steps	of	your	build	process.

Gulp	is	similar	to	Grunt,	Rake,	or	make	—	it	allows	you	to	define	an	action	(called	a	“task”	in	Gulp)	or	series	of	actions
to	take	every	time	you	build	your	application.	This	will	commonly	include	running	a	CSS	preprocessor	like	Sass	or	LESS,
copying	files,	concatenating	and	minifying	JavaScript,	and	much	more.

Gulp,	and	therefore	Elixir,	is	based	on	the	idea	of	streams.	Most	tasks	will	begin	by	loading	some	files	into	the	stream
buffer,	and	then	the	task	will	apply	transformations	to	the	content	—	preprocess	it,	minify	it,	and	then	maybe	save	the
content	to	a	new	file.

At	its	core,	Elixir	is	just	a	tool	in	your	Gulp	toolbox.	There	isn’t	even	such	a	thing	as	an	Elixir
file;	you’ll	define	your	Elixir	tasks	in	your	gulpfile.js.	But	they	look	a	lot	different	from
vanilla	Gulp	tasks,	and	you’ll	have	to	do	a	lot	less	work	to	get	them	running	out	of	the	box.

Let’s	look	at	a	common	example:	running	Sass	to	preprocess	your	CSS	styles.	In	a	normal
Gulp	environment,	that	might	look	a	little	bit	like	Example	5-1.

Example	5-1.	Compiling	a	Sass	file	in	Gulp
var	gulp	=	require('gulp'),

				sass	=	require('gulp-ruby-sass'),

				autoprefixer	=	require('gulp-autoprefixer'),

				rename	=	require('gulp-rename'),

				notify	=	require('gulp-notify'),

				livereload	=	require('gulp-livereload'),

				lr	=	require('tiny-lr'),

				server	=	lr();

gulp.task('sass',	function()	{

				return	gulp.src('resources/assets/sass/app.scss')

								.pipe(sass({

												style:	'compressed',

												sourcemap:	true

								}))

								.pipe(autoprefixer('last	2	version',	'ie	9',	'ios	6'))

								.pipe(gulp.dest('public/css'))

								.pipe(rename({suffix:	'.min'}))

								.pipe(livereload(server))

								.pipe(notify({

												title:	"Karani",

												message:	"Styles	task	complete."

								}));

});

Now,	I’ve	seen	worse.	It	reads	well,	and	it’s	clear	what’s	going	on.	But	there’s	a	lot	happening
that	you’ll	just	pull	into	every	site	you	ever	make.	It	can	get	confusing	and	repetitive.

Let’s	try	that	same	task	in	Elixir	(Example	5-2).

Example	5-2.	Compiling	a	Sass	file	in	Elixir

http://gulpjs.com

var	elixir	=	require('laravel-elixir');

elixir(function	(mix)	{

				mix.sass('app.scss');

});

That’s	it.	That	covers	all	the	basics	—	preprocessing,	notification,	folder	structure,
autoprefixing,	and	much	more.

ES6	IN	ELIXIR	6
Elixir	6,	which	came	out	with	Laravel	5.3,	changed	a	lot	of	the	syntax	to	use	ES6,	the	latest	version	of	JavaScript.
Here’s	what	Example	5-2	looks	like	in	Elixir	6:

const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				mix.sass('app.scss')

});

Don’t	worry;	this	does	exactly	the	same	thing.

Elixir	Folder	Structure
Much	of	Elixir ’s	simplicity	comes	from	the	assumed	directory	structure.	Why	make	the
decision	fresh	in	every	new	application	about	where	the	source	and	compiled	assets	live?	Just
stick	with	Elixir ’s	convention,	and	you	won’t	have	to	think	about	it	ever	again.

Every	new	Laravel	app	comes	with	a	resources	folder	with	an	assets	subfolder,	which	is
where	Elixir	will	expect	your	frontend	assets	to	live.	Your	Sass	will	live	in
resources/assets/sass,	or	your	LESS	in	resources/assets/less,	and	your	JavaScript	will	live	in
resources/assets/js.	These	will	export	to	public/css	and	public/js.

But	if	you’re	interested	in	changing	the	structure,	you	can	always	change	the	source	and
public	paths	by	changing	the	appropriate	properties	(assetsPath	and	publicPath)	on	the
elixir.config	object.

Running	Elixir
Since	Elixir	runs	on	Gulp,	you’ll	need	to	set	up	a	few	tools	before	using	it:

1.	 First,	you’ll	need	Node.js	installed.	Visit	the	Node	website	to	learn	how	to	get	it
running.

2.	 Next,	you’ll	need	to	install	Gulp	globally	on	your	machine.	Just	run	npm	install	--
global	gulp-cli	from	the	terminal	anywhere	on	your	machine.	
Once	Node	and	Gulp	are	installed,	you	will	never	have	to	run	those	commands	again.
Now	you’re	ready	to	install	this	project’s	dependencies.

3.	 Open	the	project	root	in	your	terminal,	and	run	npm	install	to	install	the	required
packages	(Laravel	ships	with	an	Elixir-ready	package.json	file	to	direct	NPM).

You’re	now	set	up!	You	can	run	gulp	to	run	Gulp/Elixir	once,	gulp	watch	to	listen	for
relevant	file	changes	and	run	in	response,	or	gulp	scripts	or	gulp	styles	to	just	run	the
script	or	style	tasks.

http://nodejs.org/

What	Does	Elixir	Provide?
We’ve	already	covered	that	Elixir	can	preprocess	your	CSS	using	Sass	or	LESS.	It	can
concatenate	files,	minify	them,	rename	them,	and	copy	them,	and	it	can	copy	entire	directories
or	individual	files.

Elixir	can	also	process	ES6/ES2015	JavaScript	and	run	Webpack,	Rollup,	and/or
Autoprefixer	on	your	code.	Not	only	that,	but	most	of	the	modern	coding	standards	for
JavaScript	and	CSS	are	covered	on	every	script	or	style,	out	of	the	box.

Elixir	can	also	run	your	tests.	There’s	a	method	for	PHPUnit	and	one	for	PHPSpec;	both	listen
to	changes	to	your	test	files	and	rerun	your	test	suite	every	time	you	make	any	changes.

The	Elixir	documentation	covers	all	of	these	options	and	more,	but	we’ll	cover	a	few	specific
use	cases	in	the	following	sections.

The	--production	flag
By	default,	Elixir	doesn’t	minify	all	the	files	it’s	generating.	But	if	you	want	to	run	the	build
scripts	in	“production”	mode,	with	all	minification	enabled,	you	can	just	add	the	--
production	flag:

$	gulp	--production

Passing	multiple	files
Most	of	the	Elixir	methods	that	normally	accept	a	single	file	(e.g.,	mix.sass('app.scss'))	can
also	take	an	array	of	files,	like	in	Example	5-3.

Example	5-3.	Compiling	multiple	files	with	Elixir
const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				mix.sass([

								'app.scss',

								'public.scss'

]);

});

Source	maps
By	default,	Elixir	generates	source	maps	for	your	files	—	you’ll	see	them	as	a	.
{filename}.map	file	next	to	each	generated	file.

If	you’re	not	familiar	with	source	maps,	they	work	with	any	sort	of	preprocessor	to	teach
your	browser ’s	web	inspector	which	files	generated	the	compiled	source	you’re	inspecting.

Without	source	maps,	if	you	use	your	browser ’s	development	tools	to	inspect	a	particular
CSS	rule	or	JavaScript	action,	you’ll	just	see	a	big	mess	of	compiled	code.	With	source	maps,
your	browser	can	pinpoint	the	exact	line	of	the	source	file,	whether	it	be	Sass	or	JavaScript	or
whatever	else,	that	generated	the	rule	you’re	inspecting.

https://laravel.com/docs/elixir

If	you	don’t	want	source	maps,	you	can	always	change	the	configuration	before	your	elixir
block	like	in	Example	5-4.

Example	5-4.	Disabling	source	maps	in	Elixir
const	elixir	=	require('laravel-elixir');

elixir.config.sourcemaps	=	false;

elixir(mix	=>	{

				mix.sass('app.scss');

});

Preprocessorless	CSS
If	you	don’t	want	to	deal	with	a	preprocessor,	there’s	a	command	for	that	—	it	will	grab	all	of
your	CSS	files,	concatenate	them,	and	output	them	to	the	public/css	directory,	just	as	if	they
had	been	run	through	a	preprocessor.	If	you	don’t	specify	an	ouput	file	name,	it’ll	end	up	in
all.css.	There	are	a	few	options,	which	you	can	see	in	Example	5-5.

Example	5-5.	Combining	stylesheets	with	Elixir
const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				//	Combines	all	files	from	resources/assets/css	and	subfolders

				mix.styles();

				//	Combines	files	from	resources/assets/css

				mix.styles([

								'normalize.css',

								'app.css'

]);

				//	Combines	all	styles	from	other	directory

				mix.stylesIn('resources/some/other/css/directory');

				//	Combines	given	styles	from	resources/assets/css

				//	and	outputs	to	a	custom	directory

				mix.styles([

								'normalize.css',

								'app.css'

],	'public/other/css/output.css');

				//	Combines	given	styles	from	custom	directory

				//	and	outputs	to	a	custom	directory

				mix.styles([

								'normalize.css',

								'app.css'

],	'public/other/css/output.css',	'resources/some/other/css/directory');

});

Concatenating	JavaScript
The	options	available	for	working	with	normal	JavaScript	files	are	very	similar	to	those
available	for	normal	CSS	files.	Take	a	look	at	Example	5-6.	Like	with	styles(),	any
commands	not	provided	with	an	output	filename	will	output	to	public/js/all.js.

Example	5-6.	Combining	JavaScript	files	with	Elixir
const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				//	Combines	files	from	resources/assets/js

				mix.scripts([

								'jquery.js',

								'app.js'

]);

				//	Combines	all	scripts	from	other	directory

				mix.scriptsIn('resources/some/other/js/directory');

				//	Combines	given	scripts	from	resources/assets/js

				//	and	outputs	to	a	custom	directory

				mix.scripts([

								'jquery.js',

								'app.js'

],	'public/other/js/output.js');

				//	Combines	given	scripts	from	custom	directory

				//	and	outputs	to	a	custom	directory

				mix.scripts([

								'jquery.js',

								'app.js'

],	'public/other/js/output.js',	'resources/some/other/js/directory');

});

Processing	JavaScript
If	you	want	to	process	your	JavaScript	—	for	example,	to	compile	your	ES6	code	into	plain
JavaScript	—	Elixir	makes	it	easy	to	use	either	Webpack	or	Rollup	for	this	purpose	(see
Example	5-7).

Example	5-7.	Processing	JavaScript	files	in	Elixir	with	Webpack	or	Rollup
elixir(function(mix)	{

				mix.webpack('app.js');

				//	or

				mix.rollup('app.js');

});

These	scripts	look	for	the	provided	filename	in	resources/assets/js	and	output	to
public/js/all.js.

You	can	use	more	complicated	aspects	of	Webpack’s	feature	set	by	creating	a
webpack.config.js	file	in	your	project	root.

COMPILING	JAVASCRIPT	IN	ELIXIR	5
Prior	to	Laravel	5.3/Elixir	6,	you’ll	want	to	compile	your	JavaScript	using	mix.browserify('app.js').

Versioning
Most	of	the	tips	from	Steve	Souders’	Even	Faster	Web	Sites	(O’Reilly)	have	made	their	way
into	our	everyday	development	practices.	We	move	scripts	to	the	footer,	reduce	the	number	of
HTTP	requests,	and	more,	often	without	even	realizing	where	those	ideas	originated.

One	of	Steve’s	tips	is	still	very	rarely	implemented,	though,	and	that	is	setting	a	very	long
cache	life	on	assets	(scripts,	styles,	and	images).	Doing	this	means	there	will	be	fewer	requests
to	your	server	to	get	the	latest	version	of	your	assets.	But	it	also	means	that	users	are
extremely	likely	to	have	a	cached	version	of	your	assets,	which	will	make	things	get	outdated,
and	therefore	break,	quickly.

The	solution	to	this	is	versioning.	Append	a	unique	hash	to	each	asset’s	filename	every	time
you	run	your	build	script,	and	then	that	unique	file	will	be	cached	indefinitely	—	or	at	least
until	the	next	build.

What’s	the	problem?	Well,	first	you	need	to	get	the	unique	hashes	generated	and	appended	to
your	filenames.	But	you	also	will	need	to	update	your	views	on	every	build	to	reference	the
new	filenames.

As	you	can	probably	guess,	Elixir	handles	that	for	you,	and	it’s	incredibly	simple.	There	are
two	components:	the	versioning	task	in	Elixir,	and	the	elixir()	PHP	helper.	First,	you	can
version	your	assets	by	running	mix.version()	like	in	Example	5-8.

Example	5-8.	mix.version
const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				mix.version('public/css/all.css');

});

This	will	generate	a	version	of	the	specified	file	with	a	unique	hash	appended	to	it	in	the
public/build	directory	—	something	like	public/build/css/all-84fa1258.css.

Next,	use	the	PHP	elixir()	helper	in	your	views	to	refer	to	that	file	like	in	Example	5-9.

Example	5-9.	Using	the	elixir()	helper	in	views
<link	rel="stylesheet"	href="{{	elixir("css/all.css")	}}">

//	will	output	something	like:

<link	rel="stylesheet"	href="/build/css/all-84fa1258.css">

HOW	DOES	ELIXIR 	VERSIONING	WORK	BEHIND	THE	SCENES?

Elixir	uses	gulp-rev,	which	takes	care	of	appending	the	hashes	to	the	filenames,	and	also	generates	a	file	named
public/build/rev-manifest.json.	This	stores	the	information	the	elixir()	helper	needs	to	find	the	generated	file.	Here’s
what	a	sample	rev-manifest.json	looks	like:

{

		"css/all.css":	"css/all-7f592e49.css"

}

Tests
With	Elixir	it’s	easy	to	run	your	PHPUnit	or	PHPSpec	tests	every	time	your	test	files	change.

You	have	two	options,	mix.phpUnit()	and	mix.phpSpec(),	and	each	will	run	the	respective
frameworks	directly	from	the	vendor	folder,	so	you	won’t	have	to	do	anything	to	make	them
work.

If	you	add	one	of	these	methods	to	your	Gulp	file,	however,	you’ll	find	they	only	run	once,
even	if	you’re	using	gulp	watch.	How	do	you	get	them	to	respond	to	changes	in	your	tests
folder?

There’s	a	separate	Gulp	command	for	that:	gulp	tdd.	This	grabs	just	the	test	commands	out
of	your	Gulp	file,	whether	phpUnit()	or	phpSpec(),	listens	to	the	appropriate	folder,	and
reruns	the	test	suite	whenever	any	files	change.

Elixir	extensions
Elixir	doesn’t	just	provide	a	simple	syntax	for	its	own	prebuilt	tasks;	it	also	makes	it	easy	to
define	your	own.

Let’s	say	you	want	to	save	text	to	a	logfile	at	certain	points.	That’s	a	shell	command,	which	is
echo	"message"	>>	file.log.	Normally	we’d	define	this	as	a	Gulp	task,	using	shell('echo
"message"	>>	file.log'),	like	in	Example	5-10.

Example	5-10.	Using	a	Gulp	task	in	Elixir
//	Define	the	task

gulp.task("log",	function	()	{

				var	message	=	"Something	happened";

				gulp.src("").pipe(shell('echo	"'	+	message	+	'"	>>	file.log'));

});

elixir(mix	=>	{

				//	Use	the	task	in	Elixir

				mix.task('log');

				//	Bind	the	task	to	run	every	time	certain	files	are	changed

				mix.task('log',	'resources/somefiles/to/watch/**/*')

});

However,	if	we	want	a	little	more	control	—	for	example,	if	we	want	to	be	able	to	actually
pass	in	the	message,	which	is	really	sort	of	vital	to	make	this	particular	task	work	—	we	can

create	an	Elixir	extension	like	in	Example	5-11.

Example	5-11.	Creating	an	Elixir	extension
//	Either	in	gulpfile.js,	or	in	an	external	file	and	required	in	gulpfile.js

var	gulp	=	require("gulp"),

				shell	=	require("gulp-shell"),

				elixir	=	require("laravel-elixir");

elixir.extend("log",	function	(message)	{

				new	Task('log',	function()	{

								return	gulp.src('').pipe(shell('echo	"'	+	message	+	'"	>>	file.log'));

				})

				.watch('./resources/some/files/**/*');

});

As	with	any	component,	we	haven’t	covered	everything	there	is	to	learn	about	Elixir,	but
hopefully	you’ve	learned	enough	to	get	you	running	with	it.	Want	to	learn	more?	Check	out
the	docs.

https://laravel.com/docs/elixir

Pagination
For	something	that	is	so	common	across	web	applications,	pagination	still	can	be	wildly
complicated	to	implement.	Thankfully,	Laravel	has	a	built-in	concept	of	pagination,	and	it’s
also	hooked	into	Eloquent	results	and	the	router	by	default.

A	BRIEF	INTRODUCTION	TO	ELOQUENT

We’ll	be	covering	Eloquent,	database	access,	and	Laravel’s	query	builder	in	depth	in	Chapter	8,	but	there	will	be	a	few
references	between	now	and	then	that	will	make	a	basic	understanding	useful.

Eloquent	is	Laravel’s	ActiveRecord	database	object-relational	mapper	(ORM),	which	makes	it	easy	to	relate	a	Post
class	(model)	to	the	posts	database	table,	and	get	all	records	with	a	call	like	Post::all().

The	query	builder	is	the	tool	that	makes	it	possible	to	make	calls	like	Post::where('active',	true)->get()	or	even
DB::table('users')->all().	You’re	building	a	query	by	chaining	methods	one	after	another.

Paginating	Database	Results
The	most	common	place	you’ll	see	pagination	is	when	you	are	displaying	the	results	of	a
database	query	and	there	are	too	many	results	for	a	single	page.	Eloquent	and	the	query
builder	both	read	the	page	query	parameter	from	the	current	page	request	and	use	it	to
provide	a	paginate()	method	on	any	result	sets;	the	single	parameter	you	should	pass
paginate()	is	how	many	results	you	want	per	page.	Take	a	look	at	Example	5-12	to	see	how
this	works.

Example	5-12.	Paginating	a	query	builder	response
//	PostsController

				public	function	index()

				{

								return	view('posts.index',	['posts'	=>	DB::table('posts')->paginate(20)]);

				}

Example	5-12	defines	that	this	route	should	return	20	posts	per	page,	and	will	define	which
“page”	of	results	the	current	user	is	on	based	on	the	URL’s	page	query	parameter,	if	it	has	one.
Eloquent	models	all	have	the	same	paginate()	method.

When	you	display	the	results	in	your	view,	your	collection	will	now	have	a	links()	method
on	it	(or	render()	for	Laravel	5.1)	that	will	output	the	pagination	controls,	with	bootstrap
class	names	assigned	to	them	by	default	(see	Example	5-13).

Example	5-13.	Rendering	pagination	links	in	a	template
//	posts/index.blade.php

<table>

@foreach	($posts	as	$post)

				<tr><td>{{	$post->title	}}</td></tr>

@endforeach

</table>

{{	$posts->links()	}}

//	By	defaut,	$posts->links()	will	output	something	like	this:

<ul	class="pagination">

				<li	class="disabled">«

				<li	class="active">1

				2

				3

				»

Manually	Creating	Paginators
If	you’re	not	working	with	Eloquent	or	the	query	builder,	or	if	you’re	working	with	a
complex	query	(e.g.,	those	using	groupBy),	you	might	find	yourself	needing	to	create	a
paginator	manually.	Thankfully,	you	can	do	that	with	the	Illuminate\Pagination\Paginator
or	Illuminate\Pagination\LengthAwarePaginator	classes.

The	difference	between	the	two	classes	is	that	Paginator	will	only	provide	previous	and	next
buttons,	but	no	links	to	each	page;	LengthAwarePaginator	needs	to	know	the	length	of	the	full
result,	so	that	it	can	generate	links	for	each	individual	page.	You	may	find	yourself	wanting	to
use	the	Paginator	on	large	result	sets,	so	your	paginator	doesn’t	have	to	be	aware	of	a
massive	count	of	results	that	might	be	costly	to	run.

Both	the	Paginator	and	the	LengthAwarePaginator	require	you	to	manually	extract	the	subset
of	content	that	you	want	to	pass	to	the	view.	Take	a	look	at	Example	5-14	for	an	example.

Example	5-14.	Manually	creating	a	paginator	in	Laravel	5.2	and	5.3
use	Illuminate\Http\Request;

use	Illuminate\Pagination\Paginator;

Route::get('people',	function	(Request	$request)	{

				$people	=	[...];	//	huge	list	of	people

				$perPage	=	15;

				$offsetPages	=	$request->input('page',	1)	-	1;

				//	The	Paginator	will	not	slice	your	array	for	you

				$people	=	array_slice(

								$people,

								$offsetPages	*	$perPage,

								$perPage

);

				return	new	Paginator(

								$people,

								$perPage

);

});

The	Paginator	syntax	has	changed	over	the	last	few	versions	of	Laravel,	so	if	you’re	using
5.1,	take	a	look	at	the	docs	to	find	the	correct	syntax.

Message	Bags
Another	common	but	painful	feature	in	web	applications	is	passing	messages	between	various
components	of	the	app,	when	the	end	goal	is	to	share	them	with	the	user.	Your	controller,	for
example,	might	want	to	send	a	validation	message:	“The	email	field	must	be	a	valid	email
address.”	However,	that	particular	message	doesn’t	just	need	to	make	it	to	the	view	layer;	it
actually	needs	to	survive	a	redirect	and	then	end	up	in	the	view	layer	of	a	different	page.	How
do	we	structure	this	messaging	logic?

Illuminate\Support\MessageBag	is	a	class	tasked	with	storing,	categorizing,	and	returning
messages	that	are	intended	for	the	end	user.	It	groups	all	messages	by	key,	where	the	keys	are
likely	to	be	something	like	errors	and	messages,	and	provides	convenience	methods	for
getting	all	its	stored	messages	or	only	those	for	a	particular	key,	and	for	outputting	these
messages	in	various	formats.

You	can	spin	up	a	new	instance	of	MessageBag	manually	like	in	Example	5-15.

Example	5-15.	Manually	creating	and	using	MessageBag
$messages	=	[

				'errors'	=>	[

								'Something	went	wrong	with	edit	1!'

],

				'messages'	=>	[

								'Edit	2	was	successful.'

]

];

$messagebag	=	new	\Illuminate\Support\MessageBag($messages);

//	Check	for	errors;	if	there	are	any,	decorate	and	echo

if	($messagebag->has('errors'))	{

				echo	'<ul	id="errors">';

				foreach	($messagebag->get('errors',	':message')	as	$error)	{

								echo	$error;

				}

				echo	'';

}

Message	bags	are	also	closely	connected	to	Laravel’s	validators	(learn	more	in	“Validation”):
when	validators	return	errors,	they	actually	return	an	instance	of	MessageBag,	which	you	can
then	pass	to	your	view	or	attach	to	a	redirect	using	redirect('route')-
>withErrors($messagebag).

Laravel	passes	an	empty	instance	of	MessageBag	to	every	view,	assigned	to	the	variable
$errors,	and	if	you’ve	flashed	a	message	bag	using	withErrors()	on	a	redirect,	it	will	get
assigned	to	that	$errors	variable	instead.	That	means	every	view	can	always	assume	it	has	an
$errors	MessageBag	it	can	check	in	whatever	place	it	does	its	validation,	which	leads	to
Example	5-16	as	a	common	snippet	developers	place	on	every	page.

Example	5-16.	Error	bag	snippet
//	partials/errors.blade.php

@if	($errors->any())

				<div	class="alert	alert-danger">

								

								@foreach	($errors	as	$error)

												{{	$error	}}

								@endforeach

								

				</div>

@endif

MISSING	$ERRORS	VARIABLE
If	you	have	any	routes	that	aren’t	under	the	web	middleware	group,	they	won’t	have	the	session	middleware,
which	means	they	won’t	have	this	$errors	variable	available.

Named	Error	Bags
Sometimes	you	need	to	differentiate	message	bags	not	just	by	key	(notices	versus	errors)	but
also	by	component.	Maybe	you	have	a	login	form	and	a	signup	form	on	the	same	page;	how
do	you	differentiate	them?

When	you	send	errors	along	with	a	redirect	using	withErrors(),	the	second	parameter	is	the
name	of	the	bag:	redirect('dashboard')->withErrors($validator,	'login').	Then,	on	the
dashboard,	you	can	use	$errors->login	to	call	all	of	the	methods	we	saw	before:	any(),
count(),	and	more.

String	Helpers,	Pluralization,	and	Localization
As	developers,	we	tend	to	look	at	blocks	of	text	as	big	placeholder	divs,	waiting	for	the	client
to	put	real	content	into	them.	Seldom	are	we	involved	in	any	logic	inside	these	blocks.

But	there	are	a	few	circumstances	where	you’ll	be	grateful	for	the	tools	Laravel	provides	for
string	manipulation.

The	String	Helpers	and	Pluralization
Laravel	has	a	series	of	helpers	for	manipulating	strings.	They’re	available	as	methods	on	the
Str	class	(e.g.,	Str::plural()),	but	most	also	have	a	global	helper	function	(e.g.,
str_plural()).

The	Laravel	documentation	covers	all	of	the	string	helpers	in	detail,	but	here	are	a	few	of	the
most	commonly	used	helpers:

e

A	shortcut	for	html_entities

starts_with,	ends_with,	str_contains
Check	a	string	(first	parameter)	to	see	if	it	starts	with,	ends	with,	or	contains	another
string	(second	parameter)

str_is

Checks	whether	a	string	(second	parameter)	matches	a	particular	pattern	(first	parameter)
—	for	example,	foo*	will	match	foobar	and	foobaz

str_slug

Converts	a	string	to	a	URL-type	slug	with	hyphens

str_plural	(word,	num),	str_singular
Pluralizes	a	word	or	singularizes	it;	English-only	(e.g.,	str_plural('dog')	returns
dogs)

https://laravel.com/docs/5.3/helpers

Localization
Localization	allows	you	to	define	multiple	languages	and	mark	any	strings	as	targets	for
translation.	You	can	set	a	fallback	language,	and	even	handle	pluralization	variations.

In	Laravel,	you’ll	need	to	set	an	application	locale	at	some	point	during	the	page	load	so	the
localization	helpers	know	which	bucket	of	translations	to	pull	from.	You’ll	do	this	with
App::setLocale($localeName),	and	you’ll	likely	put	it	in	a	service	provider.	For	now	you	can
just	put	it	in	the	boot()	method	of	AppServiceProvider,	but	you	may	want	to	create	a
LocaleServiceProvider	if	you	end	up	with	more	than	just	this	one	locale-related	binding.

SETTING	THE	LOCALE	FOR 	EACH	REQUEST

It	can	be	confusing	at	first	to	work	out	how	Laravel	“knows”	the	user’s	locale,	or	provides	translations.	Most	of	that
work	is	on	you	as	the	developer.	Let’s	look	at	a	likely	scenario.

You’ll	probably	have	some	functionality	allowing	the	user	to	choose	a	locale,	or	possibly	attempting	to	automatically
detect	it.	Either	way,	your	application	will	determine	the	locale,	and	then	you’ll	store	that	in	a	URL	parameter	or	a	session
cookie.	Then	your	service	provider	—	something	like	a	LocaleServiceProvider,	maybe	—	will	grab	that	key	and	set	it
as	a	part	of	Laravel’s	bootstrap.

So	maybe	your	user	is	at	http://myapp.com/es/contacts.	Your	LocaleServiceProvider	will	grab	that	es	string,	and	then
run	App::setLocale('es').	Going	forward,	every	time	you	ask	for	a	translation	of	a	string,	Laravel	will	look	for	the
Spanish	version	of	that	string,	which	you	will	need	to	have	defined	somewhere.

You	can	define	your	fallback	locale	in	config/app.php,	where	you	should	find	a
fallback_locale	key.	This	allows	you	to	define	a	default	language	for	your	application,
which	Laravel	will	use	if	it	can’t	find	a	translation	for	the	requested	locale.

Basic	localization
So,	how	do	we	call	for	a	translated	string?	There’s	a	helper	function,	trans($key),	that	will
pull	the	string	for	the	current	locale	for	the	passed	key	or,	if	it	doesn’t	exist,	grab	it	from	the
default	locale.	Example	5-17	demonstrates	how	a	basic	translation	works.	We’ll	use	the
example	of	a	“back	to	the	dashboard”	link	at	the	top	of	a	detail	page.

Example	5-17.	Basic	use	of	trans()
//	Normal	PHP

<?php	echo	trans('navigation.back');	?>

//	Blade

{{	trans('navigation.back')	}}

//	Blade	directive

@lang('navigation.back')

Let’s	assume	we	are	using	the	es	locale	right	now.	Laravel	will	look	for	a	file	in
resources/lang/es/navigation.php,	which	it	will	expect	to	return	an	array.	It’ll	look	for	a	back
key	on	that	array,	and	if	it	exists,	it’ll	return	its	value.	Take	a	look	at	Example	5-18	for	a
sample.

Example	5-18.	Using	a	translation
//	resources/lang/es/navigation.php

return	[

				'back'	=>	'Volver	al	panel'

];

//	routes/web.php

Route::get('/es/contacts/show/:id',	function	()	{

				//	Setting	it	manually,	for	this	example,	instead	of	in	a	service	provider

				App::setLocale('es');

				return	view('contacts.show');

});

//	resources/views/contacts/show.blade.php

{{	trans('navigation.back')	}}

Parameters	in	localization
The	preceding	example	was	relatively	simple.	Let’s	dig	into	some	that	are	more	complex.
What	if	we	want	to	define	which	dashboard	we’re	returning	to?	Take	a	look	at	Example	5-19.

Example	5-19.	Parameters	in	translations
//	resources/lang/en/navigation.php

return	[

				'back'	=>	'Back	to	:section	dashbaord'

];

//	resources/views/contacts/show.blade.php

{{	trans('navigation.back',	['section'	=>	'contacts'])	}}

As	you	can	see,	prepending	a	word	with	a	colon	(:section)	marks	it	as	a	placeholder	that	can
be	replaced.	The	second,	optional,	parameter	of	trans()	is	an	array	of	values	to	replace	the
placeholders	with.

Pluralization	in	localization
We	already	covered	pluralization,	so	now	just	imagine	you’re	defining	your	own
pluralization	rules.	There	are	two	ways	to	do	it;	we’ll	start	with	the	simplest,	in	Example	5-20.

Example	5-20.	Defining	a	simple	translation	with	an	option	for	pluralization
//	resources/lang/en/messages.php

return	[

				'task-deletion'	=>	'You	have	deleted	a	task|You	have	successfully	deleted	tasks'

];

//	resources/views/dashboard.blade.php

@if	($numTasksDeleted	>	0)

				{{	trans_choice('messages.task-deletion',	$numTasksDeleted)	}}

@endif

As	you	can	see,	we	have	a	trans_choice()	method,	which	takes	the	count	of	items	affected	as
its	second	parameter;	and	from	this	it	will	determine	which	string	to	use.

You	can	also	use	any	translation	definitions	that	are	compatible	with	Symfony’s	much	more
complex	Translation	component;	see	Example	5-21	for	an	example.

Example	5-21.	Using	the	Symfony’s	Translation	component
//	resources/lang/es/messages.php

return	[

				'task-deletion'	=>	"{0}	You	didn't	manage	to	delete	any	tasks.|"	.

								"[1,4]	You	deleted	a	few	tasks.|"	.

								"[5,Inf]	You	deleted	a	whole	ton	of	tasks."

];

Testing
In	this	chapter	we	focused	primarily	on	Laravel’s	frontend	components.	These	are	less	likely
the	objects	of	unit	tests,	but	they	may	at	times	be	used	in	your	integration	tests.

Testing	with	Elixir
You’re	not	going	to	be	writing	any	tests	around	your	Elixir	tasks.	However,	Elixir	provides
some	functions	that	will	help	with	your	testing,	so	let’s	talk	about	those	for	a	second.

If	you	add	mix.phpunit()	or	mix.phpspec()	to	your	gulpfile.js,	every	time	you	run	gulp	it
will	run	your	tests	once,	inline,	as	a	part	of	your	build	script.

And	every	time	you	run	gulp	watch,	Elixir	will	listen	to	any	change	to	your	test	files	or	any
other	core	files	(like	routes/web.php)	and	re-run	PHPUnit	or	PHPSpec	every	time	you	make
any	changes	to	those	files.

Testing	Message	and	Error	Bags
There	are	two	primary	ways	of	testing	messages	passed	along	with	message	and	error	bags.
First,	you	can	perform	a	behavior	in	your	application	tests	that	sets	a	message	that	will
eventually	be	displayed	somewhere,	then	redirect	to	that	page	and	assert	that	the	appropriate
message	is	shown.

Second,	for	errors	(which	is	the	most	common	use	case),	you	can	assert	the	session	has
errors	with	$this->assertSessionHasErrors($bindings	=	[]).	Take	a	look	at	Example	5-22
to	see	what	this	might	look	like.

Example	5-22.	Asserting	the	session	has	errors
public	function	test_missing_email_field_errors()

{

				$this->post('person/create',	['name'	=>	'Japheth']);

				$this->assertSessionHasErrors(['email']);

}

Translation	and	Localization
The	simplest	way	to	test	localization	is	with	application	tests.	Set	the	appropriate	context
(whether	by	URL	or	session),	visit()	the	page,	and	assert	that	you	see	the	appropriate
content.

TL;DR
As	a	full-stack	framework,	Laravel	provides	tools	and	components	for	the	frontend	as	well	as
the	backend.

Elixir	is	a	wrapper	around	common	Gulp	build	tasks	that	makes	it	simple	to	use	the	most
modern	build	steps.	Elixir	makes	it	easy	to	add	CSS	preprocessors;	JavaScript	transpilation,
concatenation,	and	minification;	and	much	more.

Laravel	also	offers	other	internal	tools	that	target	the	frontend,	including	pagination,	message
and	error	bags,	and	localization.

Chapter	6.	Collecting	and	Handling	User
Data

Websites	that	benefit	from	a	framework	like	Laravel	often	don’t	just	serve	static	content.
Many	deal	with	complex	and	mixed	data	sources,	and	one	of	the	most	common	(and	most
complex)	of	these	sources	is	user	input	in	its	myriad	forms:	URL	paths,	query	parameters,
POST	data,	and	file	uploads.

Laravel	provides	a	collection	of	tools	for	gathering,	validating,	normalizing,	and	filtering
user-provided	data.	We’ll	look	at	those	here.

Injecting	a	Request	Object
The	most	common	tool	for	accessing	user	data	in	Laravel	is	injecting	an	instance	of	the
Illuminate\Http\Request	object.	It	provides	easy	access	to	all	of	the	ways	users	can	provide
input	to	your	site:	POST,	posted	JSON,	GET	(query	parameters),	and	URL	segments.

OTHER	OPTIONS	FOR	ACCESSING	REQUEST	DATA
There’s	also	a	request()	global	helper	and	a	Request	facade,	both	of	which	expose	the	same	methods.	Each	of
these	options	exposes	the	entire	Illuminate	Request	object,	but	for	now	we’re	only	going	to	cover	the	methods
that	specifically	relate	to	user	data.

Since	we’re	planning	on	injecting	a	Request	object,	let’s	take	a	quick	look	at	how	to	get	the
$request	object	we’ll	be	calling	all	these	methods	on:

Route::post('form',	function	(Illuminate\Http\Request	$request)	{

				//	$request->etc()

});

$request->all()
Just	like	the	name	suggests,	$request->all()	gives	you	an	array	containing	all	of	the	input
the	user	has	provided,	from	every	source.	Let’s	say,	for	some	reason,	you	decided	to	have	a
form	POST	to	a	URL	with	a	query	parameter	—	e.g.,	sending	a	POST	to	http://myapp.com/post?
utm=12345.	Take	a	look	at	Example	6-1	to	see	what	you’d	get	from	$request->all().	(Note
that	$request->all()	also	contains	information	about	any	files	that	were	uploaded,	but	we’ll
cover	that	later	in	the	chapter.)

Example	6-1.	$request->all()
<!--	GET	route	form	view	at	/get-route	-->

<form	method="post"	action="/post-route?utm=12345">

				{{	csrf_field()	}}

				<input	type="text"	name="firstName">

				<input	type="submit">

</form>

Route::post('/post-route',	function	(Request	$request)	{

				var_dump($request->all());

});

//	Outputs:

/**

	*	[

	*					'_token'	=>	'CSRF	token	here',

	*					'firstName'	=>	'value',

	*					'utm'	=>	12345

	*]

	*/

$request->except()	and	$request->only()
$request->except()	provides	the	same	output	as	$request->all,	but	you	can	choose	one	or
more	fields	to	exclude	—	for	example,	_token.	You	can	pass	it	either	a	string	or	an	array	of
strings.

Example	6-2	shows	what	it	looks	like	when	we	use	$request->except()	on	the	same	form	as
in	Example	6-1.

Example	6-2.	$request->except()
Route::post('/post-route',	function	(Request	$request)	{

				var_dump($request->except('_token'));

});

//	Outputs:

/**

	*	[

	*					'firstName'	=>	'value',

	*					'utm'	=>	12345

	*]

	*/

$request->only()	is	the	inverse	of	$request->except(),	as	you	can	see	in	Example	6-3.

Example	6-3.	$request->except()
Route::post('/post-route',	function	(Request	$request)	{

				var_dump($request->only(['firstName',	'utm']));

});

//	Outputs:

/**

	*	[

	*					'firstName'	=>	'value',

	*					'utm'	=>	12345

	*]

	*/

$request->has()	and	$request->exists()
With	$request->has()	you	can	detect	whether	a	particular	piece	of	user	input	is	available	to
you.	Check	out	Example	6-4	for	an	analytics	example	with	our	utm	query	string	parameter
from	the	previous	examples.

Example	6-4.	$request->has()
//	POST	route	at	/post-route

if	($request->has('utm'))	{

				//	Do	some	analytics	work

}

$request->exists()	and	$request->has()	differ	in	that	they	handle	empty	values	differently:
has()	returns	FALSE	if	the	key	exists	and	is	empty;	exists()	returns	TRUE	if	the	key	exists,
even	if	it’s	empty.

$request->input()
Whereas	$request->all(),	$request->except(),	and	$request->only()	operate	on	the	full
array	of	input	provided	by	the	user,	$request->input()	allows	you	to	get	the	value	of	just	a
single	field.	Example	6-5	provides	an	example.	Note	that	the	second	parameter	is	the	default
value,	so	if	the	user	hasn’t	passed	in	a	value,	you	can	have	a	sensible	(and	nonbreaking)
fallback.

Example	6-5.	$request->input()
Route::post('/post-route',	function	(Request	$request)	{

				$userName	=	$request->input('name',	'(anonymous)');

});

Array	Input
Laravel	also	provides	convenience	helpers	for	accessing	data	from	array	input.	Just	use	the
“dot”	notation	to	indicate	the	steps	of	digging	into	the	array	structure,	like	in	Example	6-6.

Example	6-6.	Dot	notation	to	access	array	values	in	user	data
<!--	GET	route	form	view	at	/get-route	-->

<form	method="post"	action="/post-route">

				{{	csrf_field()	}}

				<input	type="text"	name="employees[0][firstName]">

				<input	type="text"	name="employees[0][lastName]">

				<input	type="text"	name="employees[1][firstName]">

				<input	type="text"	name="employees[1][lastName]">

				<input	type="submit">

</form>

//	POST	route	at	/post-route

Route::post('/post-route',	function	(Request	$request)	{

				$employeeZeroFirstName	=	$request->input('employees.0.firstName');

				$allLastNames	=	$request->input('employees.*.lastName');

				$employeeOne	=	$request->input('employees.1');

});

//	If	forms	filled	out	as	"Jim"	"Smith"	"Bob"	"Jones":

//	$employeeZeroFirstName	=	'Jim';

//	$allLastNames	=	['Smith',	'Jones'];

//	$employeeOne	=	['firstName'	=>	'Bob',	'lastName'	=>	'Jones']

JSON	Input	(and	$request->json())
So	far	we’ve	covered	input	from	query	strings	(GET)	and	form	submissions	(POST).	But	there’s
another	form	of	user	input	that’s	becoming	more	common	with	the	advent	of	JavaScript
single-page	apps	(SPAs):	the	JSON	request.	It’s	essentially	just	a	POST	request	with	the	body	set
to	JSON	instead	of	a	traditional	form	POST.

Let’s	take	a	look	at	what	it	might	look	like	to	submit	some	JSON	to	a	Laravel	route,	and	how
to	use	$request->input()	to	pull	out	that	data	(Example	6-7).

Example	6-7.	Getting	data	from	JSON	with	$request->input()
POST	/post-route	HTTP/1.1

Content-Type:	application/json

{

				"firstName":	"Joe",

				"lastName":	"Schmoe",

				"spouse":	{

								"firstName":	"Jill",

								"lastName":"Schmoe"

				}

}

//	post-route

Route::post('post-route',	function	(Request	$request)	{

				$firstName	=	$request->input('firstName');

				$spouseFirstname	=	$request->input('spouse.firstName');

});

Since	$request->input()	is	smart	enough	to	pull	user	data	from	GET,	POST,	or	JSON,	you
may	wonder	why	Laravel	even	offers	$request->json().	There	are	two	reasons	you	might
prefer	$request->json().	First,	you	might	want	to	just	be	more	explicit	to	other
programmers	on	your	project	about	where	you’re	expecting	the	data	to	come	from.	And
second,	if	the	POST	doesn’t	have	the	correct	application/json	headers,	$request->input()
won’t	pick	it	up	as	JSON,	but	$request->json()	will.

FACADE	NAMESPACES,	THE	REQUEST() 	GLOBAL	HELPER ,	
AND	INJECTING	$REQUEST

Any	time	you’re	using	facades	inside	of	namespaced	classes	(e.g.,	controllers),	you’ll	have	to	add	the	full	facade	path	to
the	import	block	at	the	top	of	your	file	(e.g.,	use	Illuminate\Support\facades\Request).

Because	of	this,	several	of	the	facades	also	have	a	companion	global	helper	function.	If	these	helper	functions	are	run
with	no	parameters,	they	expose	the	same	syntax	as	the	facade	(e.g.,	request()->has()	is	the	same	as	Request::has()).
They	also	have	a	default	behavior	for	when	you	pass	them	a	parameter	(e.g.,	request('firstName')	is	a	shortcut	to
request()->input('firstName')).

With	Request,	we’ve	been	covering	injecting	an	instance	of	the	Request	object,	but	you	could	also	use	the	Request
facade	or	the	request()	global	helper.	Take	a	look	at	Chapter	10	to	learn	more.

Route	Data
It	might	not	be	the	first	thing	you	think	of	when	you	imagine	“user	data,”	but	the	URL	is	just
as	much	user	data	as	anything	else	in	this	chapter.

There	are	three	primary	ways	you’ll	get	data	from	the	URL:	via	the	Request	facade,	route
parameters,	and	Request	objects.	We’ll	cover	Request	objects	in	more	detail	in	Chapter	10.

From	Request
Injected	Request	objects	(and	the	Request	facade	and	the	request()	helper)	have	several
methods	available	to	represent	the	state	of	the	current	page’s	URL,	but	right	now	let’s	look
primarily	at	getting	information	about	the	URL	segments.

If	you’re	not	familiar	with	the	idea	of	URL	segments,	each	group	of	characters	after	the
domain	is	called	a	segment.	So,	http://www.myapp.com/users/15/	has	two	segments:	users	and
15.

As	you	can	probably	guess,	we	have	two	methods	available	to	us:	$request->segments()
returns	an	array	of	all	segments,	and	$request->segment($segmentId)	allows	us	to	get	the
value	of	a	single	segment.	Note	that	segments	are	returned	on	a	1-based	index,	so	in	the
preceding	example,	$request->segment(1)	would	return	users.

Request	objects,	the	Request	facade,	and	the	request()	global	helper	provide	quite	a	few
more	methods	to	help	us	get	data	out	of	the	URL.	To	learn	more,	check	out	Chapter	10.

http://www.myapp.com/users/15/

From	Route	Parameters
The	other	primary	way	we	get	data	about	the	URL	is	from	route	parameters,	which	are
injected	into	the	controller	method	or	closure	that	is	serving	a	current	route	as	shown	in
Example	6-8.

Example	6-8.	Getting	URL	details	from	route	parameters
//	routes/web.php

Route::get('users/{id}',	function	($id)	{

				//	If	the	user	visits	myapp.com/users/15/,	$id	will	equal	15

});

To	learn	more	about	routes	and	route	binding,	check	out	Chapter	3.

Uploaded	Files
We’ve	talked	about	different	ways	to	interact	with	users’	text	input,	but	there’s	also	the	matter
of	file	uploads	to	consider.	The	Request	facade	provides	access	to	any	uploaded	files	using
the	Request::file()	method,	which	takes	the	file’s	input	name	as	a	parameter	and	returns	an
instance	of	Symfony\Component\HttpFoundation\File\UploadedFile.

Let’s	walk	through	an	example.	First,	our	form,	in	Example	6-9.

Example	6-9.	A	form	to	upload	files
<form	method="post"	enctype="multipart/form-data">

				{{	csrf_field()	}}

				<input	type="text"	name="name">

				<input	type="file"	name="profile_picture">

				<input	type="submit">

</form>

Now,	let’s	take	a	look	at	what	we	get	from	running	$request->all(),	in	Example	6-10.	Note
that	$request->input('profile_picture')	will	return	null;	we	need	to	use	$request-
>file('profile_picture')	instead.

Example	6-10.	The	output	from	submitting	the	form	in	Example	6-9
Route::post('form',	function	(Request	$request)	{

				var_dump($request->all());

});

//	Output:

//	[

//					"_token"	=>	"token	here"

//					"name"	=>	"asdf"

//					"profile_picture"	=>	UploadedFile	{}

//]

Route::post('form',	function	(Request	$request)	{

				if	($request->hasFile('profile_picture'))	{

								var_dump($request->file('profile_picture'));

				}

});

//	Output:

//	UploadedFile	(details)

VALIDATING	A	FILE	UPLOAD

As	you	can	see	in	Example	6-10,	we	have	access	to	$request->hasFile()	to	see	whether	the	user	uploaded	a	file.	We
can	also	check	whether	the	file	upload	was	successful	by	using	isValid()	on	the	file	itself:

if	($request->file('profile_picture')->isValid())	{

				//

}

Because	isValid()	is	called	on	the	file	itself,	it	will	error	if	the	user	didn’t	upload	a	file.	So,	to	check	for	both,	you’d
need	to	check	for	the	file’s	existence	first:

if	(

				$request->hasFile('profile_picture')	&&

				$request->file('profile_picture')->isValid()

)	{

				//

}

Symfony’s	UploadedFile	class	extends	PHP’s	native	SplFileInfo	with	methods	allowing	you
to	easily	inspect	and	manipulate	the	file.	This	list	isn’t	exhaustive,	but	it	gives	you	a	taste	of
what	you	can	do:

guessExtension()

getMimeType()

store($path,	$storageDisk	=	default	disk)

storeAs($path,	$newName,	$storageDisk	=	default	disk)

storePublicly($path,	$storageDisk	=	default	disk)

storePubliclyAs($path,	$newName,	$storageDisk	=	default	disk)

move($directory,	$newName	=	null)

getClientOriginalName()

getClientOriginalExtension()

getClientMimeType()

guessClientExtension()

getClientSize()

getError()

isValid()

As	you	can	see,	most	of	the	methods	have	to	do	with	getting	information	about	the	uploaded
file,	but	there’s	one	that	you’ll	likely	use	more	than	all	the	others:	store()	(new	in	Laravel
5.3),	which	takes	the	file	that	was	uploaded	with	the	request	and	stores	it	in	a	specified
directory	on	your	server.	Its	first	parameter	is	the	destination	directory,	and	the	optional
second	parameter	will	be	the	storage	disk	(s3,	local,	etc.)	to	use	to	store	the	file.

You	can	see	a	common	workflow	in	Example	6-11.

Example	6-11.	Common	file	upload	workflow
if	($request->hasFile('profile_picture'))	{

				$path	=	$request->profile_picture->store('profiles',	's3');

				auth()->user()->profile_picture	=	$path;

				auth()->user()->save();

}

If	you	need	to	specify	the	filename,	you	can	use	storeAs()	instead	of	store().	The	first
parameter	is	still	the	path;	the	second	is	the	filename,	and	the	optional	third	parameter	is	the
storage	disk	to	use.

PROPER	FORM	ENCODING	FOR	FILE	UPLOADS
If	you	get	null	when	you	try	to	get	the	contents	of	a	file	from	your	request,	you	might’ve	forgotten	to	set	the
encoding	type	on	your	form.	Make	sure	to	add	the	attribute	enctype="multipart/form-data"	on	your	form:

<form	method="post"	enctype="multipart/form-data">

Validation
Laravel	has	quite	a	few	ways	you	can	validate	incoming	data.	We’ll	cover	form	requests	in	the
next	section,	so	that	leaves	us	with	two	primary	options:	validating	manually	or	using	the
validate()	method	in	the	controller.	Let’s	start	with	the	simpler,	and	more	common,
validate().

validate()	in	the	Controller	Using	ValidatesRequests
Out	of	the	box,	all	Laravel	controllers	use	the	ValidatesRequests	trait,	which	provides	a
convenient	validate()	method.	Let’s	take	a	look	at	what	it	looks	like	in	Example	6-12.

Example	6-12.	Basic	usage	of	controller	validation
//	routes/web.php

Route::get('recipes/create',	'RecipesController@create');

Route::post('recipes',	'RecipesController@store');

//	app/Http/Controllers/RecipesController.php

<?php

namespace	App\Http\Controllers;

use	Illuminate\Http\Request;

class	RecipesController	extends	Controller

{

				public	function	create()

				{

								return	view('recipes.create');

				}

				public	function	store(Request	$request)

				{

								$this->validate($request,	[

												'title'	=>	'required|unique:recipes|max:125',

												'body'	=>	'required'

]);

								//	Recipe	is	valid;	proceed	to	save	it

				}

}

We	only	have	four	lines	of	code	running	our	validation	here,	but	they’re	doing	a	lot.

First,	we’re	explicitly	defining	the	fields	we	expect	and	applying	rules	(here	separated	by	the
pipe	character,	|)	to	each	individually.

Next,	the	validate()	method	checks	the	incoming	data	from	the	$request	(which	means	it
can	use	$request->all()	or	$request->input()	just	like	we	learned	about	earlier	in	the
chapter)	and	determines	whether	or	not	it	is	valid.

If	the	data	is	valid,	the	validate	method	ends	and	we	can	move	on	with	your	controller
method,	saving	the	data	or	whatever	else.

But	if	the	data	isn’t	valid,	it	throws	a	ValidationException.	This	contains	instructions	to	the
router	about	how	to	handle	this	exception.	If	the	request	is	Ajax	(or	if	it’s	requesting	JSON	as
a	response),	the	exception	will	create	a	JSON	response	containing	the	validation	errors.	If	not,
the	exception	will	return	a	redirect	to	the	previous	page,	together	with	all	of	the	user	input	and
the	validation	errors	—	perfect	for	repopulating	a	failed	form	and	showing	some	errors.

MORE	ON	LARAVEL’S	VALIDATION	RULES

In	our	examples	here	(like	in	the	docs)	we’re	using	the	“pipe”	syntax:	'fieldname':	'rule|otherRule|anotherRule'.	But
you	can	also	use	the	array	syntax	to	do	the	same	thing:	'fieldname':	['rule',	'otherRule',	'anotherRule'].

Additionally,	you	can	validate	nested	properties.	This	matters	if	you	use	HTML’s	array	syntax,	which	allows	you	to,	for
example,	have	multiple	“users”	on	an	HTML	form,	each	with	an	associated	name.	Here’s	how	you	validate	that:

$this->validate($request,	[

				'user.name'	=>	'required',

				'user.email'	=>	'required|email',

]);

We	don’t	have	enough	space	to	cover	every	possible	validation	rule	here,	but	here	are	a	few	of	the	most	common	rules
and	their	functions:

Require	the	field
required;	required_if:anotherField,equalToThisValue;	
required_unless:anotherField,equalToThisValue

Field	must	contain	certain	types	of	character
alpha,	alpha_dash,	alpha_num,	numeric,	integer

Field	must	contain	certain	patterns
email,	active_url,	ip

Dates
after:date,	before:date	(date	can	be	any	valid	string	that	strtotime()	can	handle)

Numbers
between:min,max,	min:num,	max:num,	size:num	(size	tests	against	length	for	strings,	value	for	integers,	count	for
arrays,	or	size	in	KB	for	files)

Image	dimensions
dimensions:min_width=XXX;	can	also	use	and/or	combine	with	max_width,	min_height,	max_height,	width,	height,
and	ratio

Databases
exists:tableName,	unique:tableName	(expects	to	look	in	the	same	table	column	as	the	field	name;	see	the	docs
for	how	to	customize)

http://bit.ly/2eMLZDl

Manual	Validation
If	you	are	not	working	in	a	controller,	or	if	for	some	other	reason	the	previously	described
flow	is	not	a	good	fit,	you	can	manually	create	a	Validator	instance	and	check	for	success	or
failure	like	in	Example	6-13.

Example	6-13.	Manual	validation
Route::get('recipes/create',	function	()	{

				return	view('recipes.create');

});

Route::post('recipes',	function	(Illuminate\Http\Request	$request)	{

				$validator	=	Validator::make($request->all(),	[

								'title'	=>	'required|unique:recipes|max:125',

								'body'	=>	'required'

]);

				if	($validator->fails())	{

								return	redirect('recipes/create')

												->withErrors($validator)

												->withInput();

				}

				//	Recipe	is	valid;	proceed	to	save	it

});

As	you	can	see,	we	create	an	instance	of	a	validator	by	passing	it	our	input	as	the	first
parameter	and	the	validation	rules	as	the	second	parameter.	The	validator	exposes	a	fails()
method	that	we	can	check	against	and	can	be	passed	into	the	withErrors()	method	of	the
redirect.

Displaying	Validation	Error	Messages
We’ve	already	covered	much	of	this	in	Chapter	5,	but	here’s	a	quick	refresher	on	how	to
display	errors	from	validation.

The	validate()	method	in	controllers	(and	the	withErrors()	method	on	redirects	that	it
relies	on)	flashes	any	errors	to	the	session.	These	errors	are	made	available	to	the	view
you’re	being	redirected	to	in	the	$errors	variable.	And	remember	that	as	a	part	of	Laravel’s
magic,	that	$errors	variable	will	be	available	every	time	you	load	the	view,	even	if	it’s	just
empty,	so	you	don’t	have	to	check	if	it	exists	with	isset().

That	means	you	can	do	something	like	Example	6-14	on	every	page.

Example	6-14.	Echo	validation	errors
@if	($errors->any())

				<ul	id="errors">

								@foreach	($errors->all()	as	$error)

												{{	$error	}}

								@endforeach

				

@endif

Form	Requests
As	you	build	out	your	applications,	you	might	start	noticing	some	patterns	in	your	controller
methods.	There	are	certain	patterns	that	are	repeated	—	for	example,	input	validation,	user
authentication	and	authorization,	and	possible	redirects.	If	you	find	yourself	wanting	a
structure	to	normalize	and	extract	these	common	behaviors	out	of	your	controller	methods,
you	may	be	interested	in	Laravel’s	form	requests.

A	form	request	is	a	custom	request	class	that	is	intended	to	map	to	the	submission	of	a	form,
and	the	request	takes	the	responsilibity	for	validating	the	request,	authorizing	the	user,	and
optionally	redirecting	the	user	upon	a	failed	validation.	Each	form	request	will	usually,	but
not	always,	explicitly	map	to	a	single	HTTP	request	—	e.g.,	“Create	Comment.”

Creating	a	Form	Request
You	can	create	a	new	form	request	using	Artisan:

php	artisan	make:request	CreateCommentRequest

You	now	have	a	form	request	object	available	at
app/Http/Requests/CreateCommentRequest.php.

Every	form	request	class	provides	either	one	or	two	public	methods.	The	first	is	rules(),
which	needs	to	return	an	array	of	validation	rules	for	this	request.	The	second	(optional)
method	is	authorize();	if	this	returns	true,	the	user	is	authorized	to	perform	this	request,	and
if	false,	the	user	is	rejected.	Take	a	look	at	Example	6-15	to	see	a	sample	form	request.

Example	6-15.	Sample	form	request
<?php

namespace	App\Http\Requests;

use	App\BlogPost;

use	App\Http\Requests\Request;

class	CreateCommentRequest	extends	Request

{

				public	function	rules()

				{

								return	[

												'body'	=>	'required|max:1000'

];

				}

				public	function	authorize()

				{

								$blogPostId	=	$this->route('blogPost');

								return	auth()->check()	&&	BlogPost::where('id',	$blogPostId)

												->where('user_id',	auth()->user()->id)->exists();

				}

}

The	rules()	section	of	Example	6-15	is	pretty	self-explanatory,	but	let’s	look	at	authorize()
briefly.

We’re	grabbing	the	segment	from	the	route	named	blogPost.	That’s	implying	the	route
definition	for	this	route	probably	looks	a	bit	like	this:
Route::post('blogPosts/{blogPost}',	function	()	{	//	Do	stuff	}).	As	you	can	see,
we	named	the	route	parameter	blogPost,	which	makes	it	accessible	in	our	Request	using
$this->route('parameter	name').

We	then	look	at	whether	the	user	is	logged	in	and,	if	so,	whether	any	blog	posts	exist	with	that
identifier	that	are	owned	by	the	currently	logged-in	user.	We’ll	cover	what	implications	this
has	shortly,	but	the	important	thing	to	know	is	that	returning	true	means	the	user	is	authorized
to	perform	the	specified	action	(in	this	case,	creating	a	comment),	and	false	means	the	user	is
not	authorized.

Using	a	Form	Request
Now	that	we’ve	created	a	form	request	object,	how	do	we	use	it?	It’s	a	little	bit	of	Laravel
magic.	Any	route	(closure	or	controller	method)	that	typehints	a	form	request	as	one	of	its
parameters	will	benefit	from	the	definitions	of	that	form	request.

Let’s	try	it	out,	in	Example	6-16.

Example	6-16.	Using	a	form	request
Route::post('comments',	function	(App\Http\Requests\CreateCommentRequest	$request)	{

				//	Store	comment

});

You	might	be	wondering	where	we	call	the	form	request,	but	Laravel	does	it	for	us.	It
validates	the	user	input	and	authorizes	the	request.	If	the	input	is	invalid,	it’ll	act	just	like	the
in-controller	validate()	method	works,	redirecting	the	user	to	the	previous	page	with	their
input	preserved	and	with	the	appropriate	error	messages	passed	along.	And	if	the	user	is	not
authorized,	Laravel	will	return	a	403	Forbidden	error	and	not	execute	the	route	code.

Eloquent	Model	Mass	Assignment
Until	now,	we’ve	been	looking	at	validating	at	the	controller	level,	which	is	absolutely	the	best
place	to	start.	But	you	can	also	filter	the	incoming	data	at	the	model	level.

It’s	a	common	pattern	to	pass	the	entirety	of	a	form’s	input	directly	to	a	database	model.	In
Laravel,	that	might	look	like	Example	6-17.

Example	6-17.	Passing	the	entirety	of	a	form	to	an	Eloquent	model
Route::post('posts',	function	(Request	$request)	{

				$newPost	=	Post::create($request->all());

});

We’re	assuming	here	that	the	end	user	is	kind	and	not	malicious,	and	has	kept	only	the	fields
we	want	him	to	edit	—	maybe	the	post	title	or	body.

But	what	if	our	end	user	can	guess,	or	discern,	that	we	have	an	author_id	field	on	that	posts
table?	What	if	he	used	his	browser	tools	to	add	an	author_id	field	and	set	the	ID	to	be
someone	else’s	ID,	and	the	other	person	impersonated	the	other	person	by	creating	fake	blog
posts	attributed	to	her?

Eloquent	has	a	concept	called	“mass	assignment”	that	allows	you	to	either	whitelist	fields	that
are	fillable	in	this	way	(using	the	model’s	$fillable	property)	or	blacklist	fields	that	aren’t
fillable	(using	the	model’s	$guarded	property).	Check	out	Chapter	8	to	learn	more.

In	our	example,	we	might	want	to	fill	out	the	model	like	Example	6-18	to	keep	our	app	safe.

Example	6-18.	Guarding	an	Eloquent	model	from	mischevious	mass	assignment
<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Post	extends	Model

{

				//	Disable	mass	assignment	on	the	author_id	field

				protected	$guarded	=	['author_id'];

}

By	setting	author_id	to	guarded,	we	ensure	that	malicious	users	will	no	longer	be	able	to
override	the	value	of	this	field	by	manually	adding	it	to	the	contents	of	a	form	that	they’re
sending	to	our	app.

DOUBLE	PROTECTION	USING	$REQUEST->ONLY()
While	it’s	important	to	do	a	good	job	of	protecting	our	models	from	mass	assignment,	it’s	also	worth	being	careful
on	the	assigning	end.	Rather	than	using	$request->all(),	consider	$request->only()	so	you	can	specify	which
fields	you’d	like	to	pass	into	your	model:

Route::post('posts',	function	(Request	$request)	{

				$newPost	=	Post::create($request->only([

								'title',

								'body'

]));

});

{{	Versus	{!!
Any	time	you	display	content	on	a	web	page	that	was	created	by	a	user,	you	need	to	guard
against	malicious	input,	such	as	script	injection.

Let’s	say	you	allow	your	users	to	write	blog	posts	on	your	site.	You	probably	don’t	want	them
to	be	able	to	inject	malicious	JavaScript	that	will	run	in	your	unsuspecting	visitors’	browsers,
right?	So,	you’ll	want	to	escape	any	user	input	that	you	show	on	the	page	to	avoid	this.

Thankfully,	this	is	almost	entirely	covered	for	you.	If	you	use	Laravel’s	Blade	templating
engine,	the	default	“echo”	syntax	({{	$stuffToEcho	}})	runs	the	output	through
htmlentities()	(PHP’s	best	way	of	making	user	content	safe	to	echo)	automatically.	You
actually	have	to	do	extra	work	to	avoid	escaping	the	output,	by	using	the	{!!	$stuffToEcho
!!}	syntax.

Testing
If	you’re	interested	in	testing	your	interactions	with	user	input,	you’re	probably	most
interested	in	simulating	valid	and	invalid	user	input	and	ensuring	that	if	the	input	is	invalid	the
user	is	redirected,	and	if	the	input	is	valid,	it	ends	up	in	the	proper	place	(e.g.,	the	database).

Laravel’s	end-to-end	application	testing	makes	this	simple.	Let’s	start	with	an	invalid	route
that	we	expect	to	be	rejected,	in	Example	6-19.

Example	6-19.	Testing	that	invalid	input	is	rejected
public	function	test_input_missing_a_title_is_rejected()

{

				$this->post('posts',	['body'	=>	'This	is	the	body	of	my	post']);

				$this->assertRedirectedTo('posts/create');

				$this->assertSessionHasErrors();

				$this->assertHasOldInput();

}

Here	we	assert	that	after	invalid	input	the	user	is	redirected,	with	errors	and	with	the	old	input
correctly	passed	back.	You	can	see	we’re	using	a	few	custom	PHPUnit	assertions	that	Laravel
adds	here.

So,	how	do	we	test	our	route’s	success?	Check	out	Example	6-20.

Example	6-20.	Testing	that	valid	input	is	processed
public	function	test_valid_input_should_create_a_post_in_the_database()

{

				$this->post('posts',	['title'	=>	'Post	Title',	'body'	=>	'This	is	the	body']);

				$this->seeInDatabase(['title'	=>	'Post	Title']);

}

Note	that,	if	you’re	testing	something	using	the	database,	you’ll	need	to	learn	more	about
database	migrations	and	transactions.	More	on	that	in	Chapter	12.

TL;DR
There	are	a	lot	of	ways	to	get	the	same	data:	the	Request	facade,	the	request()	global	helper,
and	injecting	an	instance	of	Illuminate\Http\Request.	Each	exposes	the	ability	to	get	all
input,	some	input,	or	specific	pieces	of	data,	and	files	and	JSON	input	can	have	some	special
considerations	at	times.

URI	path	segments	are	also	a	possible	source	of	user	input,	and	they’re	also	accessible	via	the
request	tools.

Validation	can	be	performed	manually	with	Validator::make(),	or	automatically	using	the
$this->validate()	controller	method	or	form	requests.	Each	automatic	tool,	upon	failed
validation,	redirects	the	user	to	the	previous	page	with	all	old	input	stored	and	errors	passed
along.

Views	and	Eloquent	models	also	need	to	be	protected	from	nefarious	user	input.	Protect	Blade
views	using	the	double	curly	brace	syntax	({{	}}),	which	escapes	user	input,	and	protect
models	by	only	passing	specific	fields	into	bulk	methods	using	$request->only()	and	by
defining	the	mass	assignment	rules	on	the	model	itself.

Chapter	7.	Artisan	and	Tinker

From	installation	onward,	modern	PHP	frameworks	expect	many	interactions	to	take	place	on
the	command	line.	Laravel	provides	three	primary	tools	for	command-line	interaction:
Artisan,	a	suite	of	built-in	command-line	actions	with	the	ability	to	add	more;	Tinker,	a	REPL
or	interactive	shell	for	your	application;	and	the	installer,	which	we’ve	already	covered	in
Chapter	2.

An	Introduction	to	Artisan
If	you’ve	been	reading	through	this	book	chapter	by	chapter,	you’ve	already	learned	how	to
use	Artisan	commands.	They	look	something	like	this:

php	artisan	make:controller	PostsController

If	you	look	in	the	root	folder	of	your	application,	you’ll	see	that	artisan	is	actually	just	a	PHP
file.	That’s	why	you’re	starting	your	call	with	php	artisan;	you’re	passing	that	file	into	PHP
to	be	parsed.	Everything	after	that	is	just	passed	into	Artisan	as	arguments.

SYMFONY	CONSOLE	SYNTAX
Artisan	is	actually	a	layer	on	top	of	the	Symfony	Console	component,	so	if	you’re	familiar	with	writing	Symfony
Console	commands	you	should	be	right	at	home.

Since	the	list	of	Artisan	commands	for	an	application	can	be	changed	by	a	package	or	by	the
specific	code	of	the	application,	it’s	worth	checking	every	new	application	you	encounter	to
see	what	commands	are	available.

To	get	a	list	of	all	available	Artisan	commands,	you	can	run	php	artisan	list	from	the
project	root	(although	if	you	just	run	php	artisan	with	no	parameters,	it	will	do	the	same
thing).

http://bit.ly/2fVqOT8

Basic	Artisan	Commands
There’s	not	enough	space	here	to	cover	all	of	the	Artisan	commands,	but	we’ll	cover	many	of
them.	Let’s	get	started	with	the	basic	commands:

help	provides	help	for	a	command;	e.g.,	php	artisan	help	commandName.

clear-compiled	removes	Laravel’s	compiled	class	file,	which	is	like	an	internal	Laravel
cache;	run	this	as	a	first	resort	when	things	are	going	wrong	and	you	don’t	know	why.

down	puts	your	application	in	“maintenance	mode”	in	order	for	you	to	fix	an	error,	run
migrations,	or	whatever	else;	up	restores	an	application	from	maintenance	mode.

env	displays	which	environment	Laravel	is	running	at	the	moment;	it’s	the	equivalent	of
echoing	app()->environment()	in-app.

migrate	runs	all	database	migrations.

optimize	optimizes	your	application	for	better	performance	by	caching	core	PHP	classes
into	bootstrap/cache/compile.php.

serve	spins	up	a	PHP	server	at	localhost:8000	(you	can	customize	the	host	and/or	port
with	--host	and	--port).

tinker	brings	up	the	Tinker	REPL,	which	we’ll	cover	later	in	this	chapter.

Options
Before	we	cover	the	rest	of	the	Artisan	commands,	let’s	look	at	a	few	notable	options	you	can
pass	any	time	you	run	an	Artisan	command:

-q	suppresses	all	output.

-v,	-vv,	and	-vvv	are	the	three	levels	of	output	verbosity	(normal,	verbose,	and	debug).

--no-interaction	does	not	ask	any	interactive	questions,	so	it	won’t	interrupt	automated
processes	running	it.

--env	allows	you	to	define	which	environment	the	Artisan	command	should	operate	in
(e.g.,	local,	production,	etc.).

--version	shows	you	which	version	of	Laravel	your	application	is	running	on.

You’ve	probably	guessed	from	looking	at	these	options	that	Artisan	commands	are	intended
to	be	used	much	like	basic	shell	commands:	you	might	run	them	manually,	but	they	can	also
function	as	a	part	of	some	automated	process	at	some	point.

For	example,	there	are	many	automated	deploy	processes	that	might	benefit	from	certain
Artisan	commands.	You	might	want	to	run	php	artisan	optimize	every	time	you	deploy	an
application.	Flags	like	-q	and	--no-interaction	ensure	that	your	deploy	scripts,	not	attended
by	a	human	being,	can	keep	running	smoothly.

The	Grouped	Commands
The	rest	of	the	commands	available	out	of	the	box	are	grouped	by	context.	We	won’t	cover
them	all	here,	but	we’ll	cover	each	context	broadly:

app

This	just	contains	app:name,	which	allows	you	to	replace	every	instance	of	the	default
top-level	App\	namespace	with	a	namespace	of	your	choosing.	For	example:	php
artisan	app:name	MyApplication.

auth

All	we	have	here	is	auth:clear-resets,	which	flushes	all	of	the	expired	password	reset
tokens	from	the	database.

cache

cache:clear	clears	the	caches,	and	cache:table	creates	a	database	migration	if	you	plan
to	use	the	database	cache	driver.

config

config:cache	caches	your	configuration	settings	for	faster	lookup;	to	clear	the	cache,
use	config:clear.

db

db:seed	seeds	your	database,	if	you	have	configured	database	seeders.

event

event:generate	builds	missing	event	and	event	listener	files	based	on	the	definitions	in
EventServiceProvider.	We’ll	learn	more	about	events	in	Chapter	16.

key

key:generate	creates	a	random	application	encryption	key	in	your	.env	file.

RERUNNING	ARTISAN	KEY:GENERATE	MEANS	LOSING
ENCRYPTION	KEYS

Only	run	php	artisan	key:generate	once	—	the	first	time	you	set	up	the	application	in	a	new	environment	—
because	this	key	is	used	to	encrypt	your	data;	if	you	change	it	after	data	has	been	stored,	that	data	will	all
become	inaccessible.

make

make:auth	scaffolds	out	the	views	and	corresponding	routes	for	a	landing	page,	a	user
dashboard,	and	login	and	register	pages.
All	the	rest	of	the	make:	actions	create	a	single	item,	and	have	parameters	that	vary
accordingly.	To	learn	more	about	any	individual	command’s	parameters,	use	help	to
read	its	documentation.
For	example,	you	could	run	php	artisan	help	make:migration	and	learn	that	you	can
pass	--create=tableNameHere	to	create	a	migration	that	already	has	the	create	table
syntax	in	the	file,	as	shown	here:	php	artisan	make:migration	create_posts_table	--
create=posts.

migrate

We	saw	a	migrate	command	earlier	to	run	our	migrations,	but	here	we	can	run	all	the
other	migration-related	commands.	Create	the	migrations	table	(to	keep	track	of	the
migrations	that	are	executed)	with	migrate:install,	reset	your	migrations	and	start
from	scratch	with	migrate:reset,	reset	your	migrations	and	run	them	all	again	with
migrate:refresh,	roll	back	just	one	migration	with	migrate:rollback,	or	check	the
status	of	your	migrations	with	migrate:status.

notifications

notifications:table	generates	a	migration	that	creates	the	table	for	database
notifications.

queue

We’ll	cover	Laravel’s	queues	in	Chapter	16,	but	the	basic	idea	is	that	you	can	push	jobs
up	into	remote	queues	to	be	executed	one	after	another	by	a	worker.	This	command
group	provides	all	the	tools	you	need	to	interact	with	your	queues,	like	queue:listen	to
start	listening	to	a	queue,	queue:table	to	create	a	migration	for	database-backed	queues,
and	queue:flush	to	flush	all	failed	queue	jobs.	There	are	quite	a	few	more,	which	we’ll
learn	about	in	Chapter	16.

route

If	you	run	route:list,	you’ll	see	the	definitions	of	every	route	defined	in	the
application,	including	each	route’s	verb(s),	path,	name,	controller/closure	action,	and
middleware.	You	can	cache	the	route	definitions	for	faster	lookups	with	route:cache	and
clear	your	cache	with	route:clear.

schedule

We’ll	cover	Laravel’s	cron-like	scheduler	in	Chapter	16,	but	in	order	for	it	to	work,	you
need	to	set	the	system	cron	to	run	schedule:run	once	a	minute:

*	*	*	*	*	php	/home/myapp.com/artisan	schedule:run	>>	/dev/null	2>&1

As	you	can	see,	this	Artisan	command	is	intended	to	be	run	regularly	in	order	to	power	a
core	Laravel	service.

session

session:table	creates	a	migration	for	applications	using	database-backed	sessions.

storage

storage:link	creates	a	symbolic	link	from	public/storage	to	storage/app/public.	This	is
a	common	convention	in	Laravel	apps,	to	make	it	easy	to	put	user	uploads	(or	other	files
that	commonly	end	up	in	storage/app)	somewhere	where	they’ll	be	accessible	at	a	public
URL.

vendor

Some	Laravel-specific	packages	need	to	“publish”	some	of	their	assets,	either	so	that
they	can	be	served	from	your	public	directory	or	so	that	you	can	modify	them.	Either
way,	these	packages	register	these	“publishable	assets”	with	Laravel,	and	when	you	run
vendor:publish,	it	publishes	them	to	their	specified	locations.

view

Laravel’s	view	rendering	engine	automatically	caches	your	views.	It	usually	does	a	good
job	of	handling	its	own	cache	invalidation,	but	if	you	ever	notice	it’s	gotten	stuck,	run
view:clear	to	clear	the	cache.

Writing	Custom	Artisan	Commands
Now	that	we’ve	covered	the	Artisan	commands	that	come	with	Laravel	out	of	the	box,	let’s
talk	about	writing	your	own.

First,	you	should	know:	there’s	an	Artisan	command	for	that!	Running	php	artisan
make:command	YourCommandName	generates	a	new	Artisan	command	in
app/Console/Commands	/{YourCommandName}.php.

PHP	ARTISAN	MAKE:COMMAND
The	command	signature	for	make:command	has	changed	a	few	times.	It	was	originally	command:make,	but	for	a
while	in	5.2	it	was	console:make	and	then	make:console.

Finally,	in	5.3,	it’s	settled:	all	of	the	generators	are	under	the	make:	namespace,	and	the	command	to	generate	new
Artisan	commands	is	now	make:command.

Your	first	argument	should	be	the	class	name	of	the	command,	and	you	can	optionally	pass	a
--command	parameter	to	define	what	the	terminal	command	will	be	(e.g.,	appname:action).

So,	let’s	do	it:

php	artisan	make:console	WelcomeNewUsers	--command=email:newusers

Take	a	look	at	Example	7-1	to	see	what	you’ll	get.

Example	7-1.	The	default	skeleton	of	an	Artisan	command
<?php

namespace	App\Console\Commands;

use	Illuminate\Console\Command;

class	WelcomeNewUsers	extends	Command

{

				/**

					*	The	name	and	signature	of	the	console	command.

					*

					*	@var	string

					*/

				protected	$signature	=	'email:newusers';

				/**

					*	The	console	command	description.

					*

					*	@var	string

					*/

				protected	$description	=	'Command	description';

				/**

					*	Create	a	new	command	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								parent::__construct();

				}

				/**

					*	Execute	the	console	command.

					*

					*	@return	mixed

					*/

				public	function	handle()

				{

								//

				}

}

As	you	can	see,	it’s	very	easy	to	define	the	command	signature,	the	help	text	it	shows	in

command	lists,	and	the	command’s	behavior	on	instantiation	(__construct())	and	on
execution	(handle()).

Registering	Commands
There’s	one	step	left	to	make	this	new	command	usable	in	your	application:	you	need	to
register	it.

Open	app/Console/Kernel.php.	You’ll	see	an	array	of	command	class	names	under	the
$commands	property.	To	register	your	new	command,	add	its	class	to	this	array.	You	can	write
it	out,	or	just	use	the	::class	class	name	accessor	on	the	class	as	in	Example	7-2.

Example	7-2.	Registering	a	new	command	in	the	console	kernel
class	Kernel	extends	ConsoleKernel

{

				/**

					*	The	Artisan	commands	provided	by	your	application.

					*

					*	@var	array

					*/

				protected	$commands	=	[

								\App\Console\Commands\WelcomeNewUsers::class,

];

WRITING	CLOSURE-BASED	COMMANDS
If	you’d	prefer	to	keep	your	command	definition	process	simpler,	you	can	write	commands	as	closures	instead	of
classes	by	defining	them	in	routes/console.php.	Everything	we	discuss	in	this	chapter	will	apply	the	same	way,	but
you	will	just	define	and	register	the	commands	in	a	single	step	in	that	file:

//	routes/console.php

Artisan::command(

				'password:reset	{userId}	{--sendEmail}',

				function	($userId,	$sendEmail)	{

								//	do	something...

				}

);

A	Sample	Command
We	haven’t	covered	mail	or	Eloquent	yet	(see	Chapter	15	for	mail	and	Chapter	8	for
Eloquent),	but	the	sample	handle()	method	in	Example	7-3	should	read	pretty	clearly.

Example	7-3.	A	sample	Artisan	command	handle()	method
...

class	WelcomeNewUsers	extends	Command

{

				public	function	handle()

				{

								User::signedUpThisWeek()->each(function	($user)	{

												Mail::send(

																'emails.welcome',

																['name'	=>	$user->name],

																function	($m)	use	($user)	{

																				$m->to($user->email)->subject('Welcome!');

																}

);

								});

				}

Now	every	time	you	run	php	artisan	email:newusers,	this	command	will	grab	every	user
that	signed	up	this	week	and	send	them	the	welcome	email.

If	you	would	prefer	injecting	your	mail	and	user	dependencies	instead	of	using	facades,	you
can	typehint	them	in	the	command	constructor,	and	Laravel’s	container	will	inject	them	for
you	when	the	command	is	instantiated.

Take	a	look	at	Example	7-4	to	see	what	Example	7-3	might	look	like	using	dependency
injection	and	extracting	its	behavior	out	to	a	service	class.

Example	7-4.	The	same	command,	refactored
...

class	WelcomeNewUsers	extends	Command

{

				public	function	__construct(UserMailer	$userMailer)

				{

								parent::__construct();

								$this->userMailer	=	$userMailer

				}

				public	function	handle()

				{

								$this->userMailer->welcomeNewUsers();

				}

KEEP	IT	SIMPLE

It	is	possible	to	call	Artisan	commands	from	the	rest	of	your	code,	so	you	can	use	them	to	encapsulate	chunks	of
application	logic.	This	is	a	very	common	practice	in	the	Laravel	community.

However,	the	Laravel	docs	recommend	instead	packaging	the	application	logic	into	a	service	class,	and	injecting	that
service	into	your	command.	Console	commands	are	seen	as	being	similar	to	controllers:	they’re	not	domain	classes,
they’re	traffic	cops	that	just	route	incoming	requests	to	the	correct	behavior.

Arguments	and	Options
The	$signature	property	of	the	new	command	looks	like	it	might	just	contain	the	command
name.	But	this	property	is	also	where	you’ll	define	any	arguments	and	options	for	the
command.	There’s	a	specific,	simple	syntax	you	can	use	to	add	arguments	and	options	to	your
Artisan	commands.

Before	we	dig	into	that	syntax,	take	a	look	at	an	example	for	some	context:

protected	$signature	=	'password:reset	{userId}	{--sendEmail}';

Arguments,	required,	optional,	and/or	with	defaults
To	define	a	required	argument,	surround	it	with	braces:

password:reset	{userId}

To	make	the	argument	optional,	add	a	question	mark:

password:reset	{userId?}

To	make	it	optional	and	provide	a	default,	use:

password:reset	{userId=1}

Options,	required	values,	value	defaults,	and	shortcuts
Options	are	similar	to	arguments,	but	they’re	prefixed	with	--	and	can	be	used	with	no	value.
To	add	a	basic	option,	surround	it	with	braces:

password:reset	{userId}	{--sendEmail}

If	your	option	requires	a	value,	add	an	=	to	its	signature:

password:reset	{userId}	{--password=}

And	if	you	want	to	pass	a	default	value,	add	it	after	the	=:

password:reset	{userId}	{--queue=default}

Array	arguments	and	array	options
Both	for	arguments	and	for	options,	if	you	want	to	accept	an	array	as	input,	use	the	*
character:

password:reset	{userIds*}

password:reset	{--ids=*}

Using	array	arguments	and	parameters	looks	a	bit	like	Example	7-5.

Example	7-5.	Using	array	syntax	with	Artisan	commands
//	Argument

php	artisan	password:reset	1	2	3

//	Option

php	artisan	password:reset	--ids=1	--ids=2	--ids=3

ARRAY	ARGUMENTS	MUST	BE	THE	LAST	ARGUMENT
Since	an	array	argument	captures	every	parameter	after	its	definition	and	adds	them	as	array	items,	an	array
argument	has	to	be	the	last	argument	or	option	within	an	Artisan	command’s	signature.

Input	descriptions
Remember	how	the	built-in	Artisan	commands	can	give	us	more	information	about	their
parameters	if	we	use	artisan	help?	We	can	provide	that	same	information	about	our	custom
commands.	Just	add	a	colon	and	the	description	text	within	the	curly	braces,	like	in
Example	7-6.

Example	7-6.	Defining	description	text	for	Artisan	arguments	and	options
protected	$signature	=	'password:reset

																								{userId	:	The	ID	of	the	user}

																								{--sendEmail	:	Whether	to	send	user	an	email}';

Using	Input
Now	that	we’ve	prompted	for	this	input,	how	do	we	use	it	in	our	command’s	handle()
method?	We	have	two	options	for	retrieving	the	values	of	arguments	and	options.

argument()
$this->argument()	with	no	parameters	returns	an	array	of	all	arguments	(the	first	array	item
will	be	the	command	name).	With	a	parameter	passed,	it’ll	return	the	value	of	the	argument
specified:

//	with	definition	"password:reset	{userId}":

php	artisan	password:reset	5

//	$this->argument()	returns	this	array

[

				"command":	"password:reset",

				"userId':	"5",

]

//	$this->argument('userId')	returns	this	string

"5"

option()
$this->option()	with	no	parameters	returns	an	array	of	all	options,	including	some	that	will
by	default	be	false	or	null.	With	a	parameter,	it’ll	return	the	value	of	the	option	specified:

//	with	definition	"password:reset	{--userId=}":

php	artisan	password:reset	--userId=5

//	$this->option()	returns	this	array

[

				"userId"	=>	"5"

				"help"	=>	false

				"quiet"	=>	false

				"verbose"	=>	false

				"version"	=>	false

				"ansi"	=>	false

				"no-ansi"	=>	false

				"no-interaction"	=>	false

				"env"	=>	null

]

//	$this->option('userId')	returns	this	string

"5"

Example	7-7	shows	an	Artisan	command	using	argument()	and	option()	in	its	handle()
method.

Example	7-7.	Getting	input	from	an	Artisan	command
public	function	handle()

{

				//	All	arguments,	including	the	command	name

				$arguments	=	$this->argument();

				//	Just	the	'userId'	argument

				$userid	=	$this->argument('userId');

				//	All	options,	including	some	defaults	like	'no-interaction'	and	'env'

				$options	=	$this->option();

				//	Just	the	'sendEmail'	option

				$sendEmail	=	$this->option('sendEmail');

}

Prompts
There	are	a	few	more	ways	to	get	user	input	from	within	your	handle()	code,	and	they	all
involve	prompting	the	user	to	enter	information	during	the	execution	of	your	command:

ask()

Prompts	the	user	to	enter	freeform	text:

$email	=	$this->ask('What	is	your	email	address?');

secret()

Prompts	the	user	to	enter	freeform	text,	but	hides	the	typing	with	asterisks:

$password	=	$this->ask('What	is	the	DB	password?');

confirm()

Prompts	the	user	for	a	yes/no	answer,	and	returns	a	boolean:

if	($this->confirm('Do	you	want	to	truncate	the	tables?'))	{

				//

}

All	answers	except	y	or	Y	will	be	treated	as	a	“no.”

anticipate()

Prompts	the	user	to	enter	freeform	text,	and	provides	autocomplete	suggestions.	Still
allows	the	user	to	type	whatever	she	wants:

$album	=	$this->anticipate('What	is	the	best	album	ever?',	[

				"The	Joshua	Tree",	"Pet	Sounds",	"What's	Going	On"

]);

choice()

Prompts	the	user	to	choose	one	of	the	provided	options.	The	last	parameter	is	the	default
if	the	user	doesn’t	choose:

$winner	=	$this->choice(

				'Who	is	the	best	football	team?',

				['Gators',	'Wolverines'],

				0

);

Note	that	the	final	parameter,	the	default,	should	be	the	array	key.	Since	we	passed	a
nonassociative	array,	the	key	for	“Gators”	is	0.	You	could	also	key	your	array,	if	you’d
prefer:

$winner	=	$this->choice(

				'Who	is	the	best	football	team?',

				['gators'	=>	'Gators',	'wolverines'	=>	'Wolverines'],

				'gators'

);

Output
During	the	execution	of	your	command,	you	might	want	to	write	messages	to	the	user.	The
most	basic	way	to	do	this	is	to	use	$this->info()	to	output	basic	green	text:

$this->info('Your	command	has	run	successfully.');

You	also	have	available	the	comment()	(orange),	question()	(highlighted	teal),	error()
(highlighted	red),	and	line()	(uncolored)	methods	to	echo	to	the	command	line.

Please	note	that	the	exact	colors	may	vary	from	machine	to	machine,	but	they	try	to	be	in	line
with	the	local	machine’s	standards	for	communicating	to	the	end	user.

Table	output
The	table	component	makes	it	simple	to	create	ASCII	tables	full	of	your	data.	Take	a	look	at
Example	7-8.

Example	7-8.	Outputting	tables	with	Artisan	commands
$headers	=	['Name',	'Email'];

$data	=	[

				['Dhriti',	'dhriti@amrit.com'],

				['Moses',	'moses@gutierez.com']

];

//	Or,	you	could	get	similar	data	from	the	database:

//	$data	=	App\User::all(['name',	'email'])->toArray();

$this->table($headers,	$data);

Note	that	Example	7-8	has	two	sets	of	data:	the	headers,	and	the	data	itself.	Both	contain	two
“cells”	per	“row”;	the	first	cell	in	each	row	is	the	name,	and	the	second	is	the	email.	That	way
the	data	from	the	Eloquent	call	(which	is	constrained	to	pull	only	name	and	email)	matches	up
with	the	headers.

Take	a	look	at	Example	7-9	to	see	what	the	table	output	looks	like.

Example	7-9.	Sample	output	of	an	Artisan	table
+---------+--------------------+

|	Name				|	Email														|

+---------+--------------------+

|	Dhriti		|	dhriti@amrit.com			|

|	Moses			|	moses@gutierez.com	|

+---------+--------------------+

Progress	bars
If	you’ve	ever	run	npm	install,	you’ve	seen	a	command-line	progress	bar	before.	Let’s	build
one	in	Example	7-10.

Example	7-10.	Sample	Artisan	progress	bar
$totalUnits	=	10;

$this->output->progressStart($totalUnits);

for	($i	=	0;	$i	<	$totalUnits;	$i++)	{

				sleep(1);

				$this->output->progressAdvance();

}

$this->output->progressFinish();

What	did	we	do	here?	First,	we	informed	the	system	how	many	“units”	we	needed	to	work
through.	Maybe	a	unit	is	a	user,	and	you	have	350	users.	The	bar	will	then	divide	the	entire
width	it	has	available	on	your	screen	by	350,	and	increment	it	by	1/350th	every	time	you	run
progressAdvance().	Once	you’re	done,	run	progressFinish()	so	it	knows	it’s	done
displaying	the	progress	bar.

Calling	Artisan	Commands	in	Normal	Code
While	Artisan	commands	are	designed	to	be	run	from	the	command	line,	you	can	also	call
them	from	other	code.

The	easiest	way	is	to	use	the	Artisan	facade.	You	can	either	call	a	command	using
Artisan::call()	(which	will	return	the	command’s	exit	code),	or	queue	a	command	using
Artisan::queue().

Both	take	two	parameters:	first,	the	terminal	command	(password:reset);	and	second,	an
array	of	parameters	to	pass	it.	Take	a	look	at	Example	7-11	to	see	how	it	works	with
arguments	and	options.

Example	7-11.	Calling	Artisan	commands	from	other	code
Route::get('test-artisan',	function	()	{

				$exitCode	=	Artisan::call('password:reset',	[

								'userId'	=>	15,	'--sendEmail'	=>	true

]);

});

As	you	can	see,	arguments	are	passed	by	keying	to	the	argument	name,	and	options	with	no
value	can	be	passed	true	or	false.

You	can	also	call	Artisan	commands	from	other	commands,	using	$this->call,	(which	is	the
same	as	Artisan::call(),	or	$this->callSilent,	which	is	the	same	but	suppresses	all
output).	See	Example	7-12	for	an	example.

Example	7-12.	Calling	Artisan	commands	from	other	Artisan	commands
public	function	handle()

{

				$this->callSilent('password:reset',	[

								'userId'	=>	15

]);

}

Finally,	you	can	inject	an	instance	of	the	Illuminate\Contracts\Console\Kernel	contract,
and	use	its	call()	method.

Tinker
Tinker	is	a	REPL,	or	read–eval–print	loop.	If	you’ve	ever	used	IRB	in	Ruby,	you’ll	be
familiar	with	how	a	REPL	works.

REPLs	give	you	a	prompt,	similar	to	the	command-line	prompt,	that	mimics	a	“waiting”	state
of	your	application.	You	type	your	commands	into	the	REPL,	hit	Return,	and	then	expect	what
you	typed	to	be	evaluated	and	the	response	printed	out.

Example	7-13	provides	a	quick	sample	to	give	you	a	sense	of	how	it	works	and	how	it	might
be	useful.	We	start	the	REPL	with	php	artisan	tinker	and	are	then	presented	with	a	blank
prompt	(>>>);	every	response	to	our	commands	is	printed	on	a	line	prefaced	with	=>.

Example	7-13.	Using	Tinker
php	artisan	tinker

>>>	$user	=	new	App\User;

=>	App\User:	{}

>>>	$user->email	=	'matt@mattstauffer.co';

=>	"matt@mattstauffer.co"

>>>	$user->password	=	bcrypt('superSecret');

=>	"$2y$10$TWPGBC7e8d1bvJ1q5kv.VDUGfYDnE9gANl4mleuB3htIY2dxcQfQ5"

>>>	$user->save();

=>	true

As	you	can	see,	we	created	a	new	user,	set	some	data,	and	saved	it	to	the	database.	And	this	is
real.	If	this	were	a	production	application,	we	would’ve	just	created	a	brand	new	user	in	our
system.

This	makes	Tinker	a	great	tool	for	simple	database	interactions,	for	trying	out	new	ideas,	and
for	running	snippets	of	code	when	it’d	be	a	pain	to	find	a	place	to	put	them	in	the	application
source	files.

Tinker	is	powered	by	Psy	Shell,	so	check	that	out	to	see	what	else	you	can	do	with	Tinker.

http://psysh.org/

Testing
Since	you	know	how	to	call	Artisan	commands	from	code,	it’s	easy	to	do	that	in	a	test	and
ensure	that	whatever	behavior	you	expected	to	be	performed	has	been	performed	correctly,	as
in	Example	7-14.

Example	7-14.	Calling	Artisan	commands	from	a	test
public	function	test_empty_log_command_empties_logs_table()

{

				DB::table('logs')->insert(['message'	=>	'Did	something']);

				Artisan::call('logs:empty');

				$this->assertCount(0,	DB::table('logs')->get());

}

As	always,	facades	are	easy	to	swap	out,	but	if	you	don’t	want	to	do	this	you	can	instead	inject
your	dependencies	into	the	constructor	of	the	Artisan	command,	which	will	make	them	easy
to	swap	out	at	test	time.

The	Artisan	facade	provides	access	to	the	Illuminate\Contracts\Console\Kernel	contract,
so	if	you	want	to	avoid	using	the	facade	in	your	code,	you	can	instead	inject	an	instance	of	that
and	use	its	call()	method,	as	in	Example	7-15.

Example	7-15.	Injecting	the	kernel	instead	of	using	the	Artisan	facade
use	Illuminate\Contracts\Console\Kernel;

...

class	NightlyCleanup	extends	Job

{

				...

				public	function	handle(Kernel	$kernel)

				{

								//	...	do	other	stuff

								$kernel->call('logs:empty');

				}

TL;DR
Artisan	commands	are	Laravel’s	command-line	tools.	Laravel	comes	with	quite	a	few	out	of
the	box,	but	it’s	also	easy	to	create	your	own	Artisan	commands	and	call	them	from	the
command	line	or	your	own	code.

Tinker	is	a	REPL	that	makes	it	simple	to	get	into	your	application	environment	and	interact
with	real	code	and	real	data.

Chapter	8.	Database	and	Eloquent

Laravel	provides	a	suite	of	tools	for	interacting	with	your	application’s	databases,	but	the
most	notable	is	Eloquent,	Laravel’s	ActiveRecord	ORM	(object-relational	mapper).

Eloquent	is	one	of	Laravel’s	most	popular	and	influential	features.	It’s	a	great	example	of	how
Laravel	is	different	from	the	majority	of	PHP	frameworks;	in	a	world	of	DataMapper	ORMs
that	are	powerful	but	complex,	Eloquent	stands	out	for	its	simplicity.	There’s	one	class	per
table,	which	is	responsible	for	retrieving,	representing,	and	persisting	data	in	that	table.

Whether	or	not	you	choose	to	use	Eloquent,	however,	you’ll	still	get	a	ton	of	benefit	from	the
other	database	tools	Laravel	provides.	So,	before	we	dig	into	Eloquent,	let’s	start	by	covering
the	basics	of	Laravel’s	database	functionality:	migrations,	seeders,	and	the	query	builder.

Then	we’ll	cover	Eloquent:	defining	your	models;	inserting,	updating,	and	deleting;
customizing	your	responses	with	accessors,	mutators,	and	attribute	casting;	and	finally
relationships.	There’s	a	lot	going	on	here,	and	it’s	easy	to	get	overwhelmed,	but	just	take	it
one	step	at	a	time	and	we’ll	make	it	through.

Configuration
Before	we	get	into	how	to	use	Laravel’s	database	tools,	let’s	pause	for	a	second	and	go	over
how	to	configure	your	database	credentials	and	connections.

The	configuration	for	database	access	lives	in	config/database.php.	Like	many	other
configuration	areas	in	Laravel,	you	can	define	multiple	“connections”	and	then	decide	which
the	code	will	use	by	default.

Database	Connections
By	default,	there’s	one	connection	for	each	of	the	connection	types,	as	you	can	see	in
Example	8-1.

Example	8-1.	The	default	database	connections	list
			'connections'	=>	[

								'sqlite'	=>	[

												'driver'			=>	'sqlite',

												'database'	=>	database_path('database.sqlite'),

												'prefix'			=>	'',

],

								'mysql'	=>	[

												'driver'				=>	'mysql',

												'host'						=>	env('DB_HOST',	'localhost'),

												'database'		=>	env('DB_DATABASE',	'forge'),

												'username'		=>	env('DB_USERNAME',	'forge'),

												'password'		=>	env('DB_PASSWORD',	''),

												'charset'			=>	'utf8',

												'collation'	=>	'utf8_unicode_ci',

												'prefix'				=>	'',

												'strict'				=>	false,

												'engine'				=>	null,

],

								'pgsql'	=>	[

												'driver'			=>	'pgsql',

												'host'					=>	env('DB_HOST',	'localhost'),

												'database'	=>	env('DB_DATABASE',	'forge'),

												'username'	=>	env('DB_USERNAME',	'forge'),

												'password'	=>	env('DB_PASSWORD',	''),

												'charset'		=>	'utf8',

												'prefix'			=>	'',

												'schema'			=>	'public',

],

								'sqlsrv'	=>	[

												'driver'			=>	'sqlsrv',

												'host'					=>	env('DB_HOST',	'localhost'),

												'database'	=>	env('DB_DATABASE',	'forge'),

												'username'	=>	env('DB_USERNAME',	'forge'),

												'password'	=>	env('DB_PASSWORD',	''),

												'charset'		=>	'utf8',

												'prefix'			=>	'',

],

]

You	could	create	new	named	connections,	though,	and	still	be	able	to	set	the	drivers	(MySQL,
Postgres,	etc.)	in	those	new	named	connections.	So,	while	there’s	one	connection	per	driver
by	default,	that’s	not	a	constraint.

Each	connection	allows	you	to	define	the	properties	necessary	for	connecting	to	and
customizing	each	connection	type.

There	are	a	few	reasons	for	the	idea	of	multiple	drivers.	To	start	with,	the	“connections”
section	as	it	comes	out	of	the	box	is	a	simple	template	that	makes	it	easy	to	start	apps	that	use
any	of	the	supported	database	connection	types.	In	many	apps,	you	can	pick	the	database
connection	you’ll	be	using,	fill	out	its	information,	and	even	delete	the	others	if	you’d	like.	I
usually	just	keep	them	all	there,	in	case	I	might	eventually	use	them.

But	there	are	also	some	cases	where	you	might	need	multiple	connections	within	the	same
application.	For	example,	you	might	use	different	database	connections	for	two	different	types
of	data,	or	you	might	read	from	one	and	write	to	another.	Support	for	multiple	connections
makes	this	possible.

Other	Database	Configuration	Options
The	config.database	configuration	section	has	quite	a	few	other	configuration	settings.	You
can	configure	Redis	access,	customize	the	table	name	used	for	migrations,	determine	the
default	connection,	and	toggle	whether	non-Eloquent	calls	return	stdClass	or	array	instances.

With	any	service	in	Laravel	that	allows	multiple	“connections”	—	sessions	can	be	backed	by
the	database	or	file	storage,	the	cache	can	use	Redis	or	Memcached,	databases	can	use	MySQL
or	PostgreSQL	—	you	can	define	multiple	connections	and	also	choose	that	a	particular
connection	will	be	the	“default,”	meaning	it	will	be	used	any	time	you	don’t	explicitly	ask	for
a	particular	connection.	Here’s	how	you	ask	for	a	specific	connection,	if	you	want	to:

$users	=	DB::connection('secondary')->select('select	*	from	users');

Migrations
Modern	frameworks	like	Laravel	make	it	easy	to	define	your	database	structure	with	code-
driven	migrations.	Every	new	table,	column,	index,	and	key	can	be	defined	in	code,	and	any
new	environment	can	be	brought	from	bare	database	to	your	app’s	perfect	schema	in	seconds.

Defining	Migrations
A	migration	is	a	single	file	that	defines	two	things:	the	modifications	desired	when	running
this	migration	up	and	the	modifications	desired	when	running	this	migration	down.

“UP”	AND	“DOWN”	IN	MIGRATIONS

Migrations	are	always	run	in	order	by	date.	Every	migration	file	is	named	something	like	this:
2014_10_12_000000_create_users_table.php.	When	a	new	system	is	migrated,	the	system	grabs	each	migration,
starting	at	the	earliest	date,	and	runs	its	up()	method	—	you’re	migrating	it	“up”	at	this	point.	But	the	migration	system
also	allows	you	to	“roll	back”	your	most	recent	set	of	migrations.	It’ll	grab	each	of	them	and	run	its	down()	method,
which	should	undo	whatever	changes	the	up	migration	made.

So,	the	up()	method	of	a	migration	should	“do”	its	migration,	and	the	down()	method	should	“undo”	it.

Example	8-2	shows	what	the	default	“create	users	table”	migration	that	comes	with	Laravel
looks	like.

Example	8-2.	Laravel’s	default	“create	users	table”	migration
<?php

use	Illuminate\Database\Schema\Blueprint;

use	Illuminate\Database\Migrations\Migration;

class	CreateUsersTable	extends	Migration

{

				/**

					*	Run	the	migrations.

					*

					*	@return	void

					*/

				public	function	up()

				{

								Schema::create('users',	function	(Blueprint	$table)	{

												$table->increments('id');

												$table->string('name');

												$table->string('email')->unique();

												$table->string('password',	60);

												$table->rememberToken();

												$table->timestamps();

								});

				}

				/**

					*	Reverse	the	migrations.

					*

					*	@return	void

					*/

				public	function	down()

				{

								Schema::drop('users');

				}

}

As	you	can	see,	we	have	an	up()	method	and	a	down()	method.	up()	tells	the	migration	to
create	a	new	table	named	users	with	a	few	fields,	and	down()	tells	it	to	drop	the	users	table.

Creating	a	migration
As	we	saw	in	Chapter	7,	there’s	an	Artisan	command	for	creating	a	migration	file.	It’s	php

artisan	make:migration,	and	it	has	a	single	parameter,	which	is	the	name	of	the	migration.
For	example,	to	create	the	table	we	just	covered,	you	would	run	php	artisan
make:migration	create_users_table.

There	are	two	flags	you	can	optionally	pass	to	this	command.	--create=table_name	prefills
the	migration	with	code	designed	to	create	a	table	named	table_name,	and	--
table=_table_name_	just	prefills	the	migration	for	modifications	to	an	existing	table.	Here
are	a	few	examples:

php	artisan	make:migration	create_users_table

php	artisan	make:migration	add_votes_to_users_table	--table=users

php	artisan	make:migration	create_users_table	--create=users

Creating	tables
We	already	saw	in	the	default	create_users_table	migration	that	our	migrations	depend	on
the	Schema	facade	and	its	methods.	Everything	we	can	do	in	these	migrations	will	rely	on	the
methods	of	Schema.

To	create	a	new	table	in	a	migration,	use	the	create()	method	—	the	first	parameter	is	the
table	name,	and	the	second	is	a	closure	that	defines	its	columns:

Schema::create('tablename',	function	(Blueprint	$table)	{

				//	Create	columns	here

});

Creating	columns
To	create	new	columns	in	a	table,	whether	in	a	create	table	call	or	a	modify	table	call,	use	the
instance	of	Blueprint	that’s	passed	into	your	closure:

Schema::create('users',	function	(Blueprint	$table)	{

				$table->string('name');

});

Let’s	look	at	the	various	methods	available	on	Blueprint	instances	for	creating	columns.	I’ll
describe	how	they	work	in	MySQL,	but	if	you’re	using	another	database,	Laravel	will	just	use
the	closest	equivalent.

The	following	are	the	simple	field	Blueprint	methods:

integer(colName),	tinyInteger(colName),	smallInteger(colName),
mediumInteger(colName),	bigInteger(colName)

Adds	an	INTEGER	type	column,	or	one	of	its	many	variations

string(colName,	OPTIONAL	length)

Adds	a	VARCHAR	type	column

binary(colName)

Adds	a	BLOB	type	column

boolean(colName)

Adds	a	BOOLEAN	type	column	(a	TINYINT(1)	in	MySQL)

char(colName,	length)

Adds	a	CHAR	column

datetime(colName)

Adds	a	DATETIME	column

decimal(colName,	precision,	scale)

Adds	a	DECIMAL	column,	with	precision	and	scale	—	e.g.,	decimal('amount',	5,	2)
specifies	a	precision	of	5	and	a	scale	of	2

double(colName,	total	digits,	digits	after	decimal)

Adds	a	DOUBLE	column	—	e.g.,	double('tolerance',	12,	8)	specifies	12	digits	long,
with	8	of	those	digits	to	the	right	of	the	decimal	place,	as	in	7204.05691739

enum(colName,	[choiceOne,	choiceTwo])

Adds	an	ENUM	column,	with	provided	choices

float(colName)

Adds	a	FLOAT	column	(same	as	double	in	MySQL)

json(colName)	and	jsonb(colName)
Adds	a	JSON	or	JSONB	column	(or	a	TEXT	column	in	Laravel	5.1)

text(colName),	mediumText(colName),	longText(colName)
Adds	a	TEXT	column	(or	its	various	sizes)

time(colName)

Adds	a	TIME	column

timestamp(colName)

Adds	a	TIMESTAMP	column

uuid(colName)

Adds	a	UUID	column	(CHAR(36)	in	MySQL)

And	these	are	the	special	(joined)	Blueprint	methods:

increments(colName)	and	bigIncrements(colName)
Add	an	unsigned	incrementing	INTEGER	or	BIG	INTEGER	primary	key	ID

timestamps()	and	nullableTimestamps()

Adds	created_at	and	updated_at	timestamp	columns

rememberToken()

Adds	a	remember_token	column	(VARCHAR(100))	for	user	“remember	me”	tokens

softDeletes()

Adds	a	deleted_at	timestamp	for	use	with	soft	deletes

morphs(colName)

For	a	provided	+colName+,	adds	an	integer	colName_id	and	a	string	colName_type	(e.g.,
morphs('tag')	adds	integer	tag_id	and	string	tag_type);	for	use	in	polymorphic
relationships

Building	extra	properties	fluently
Most	of	the	properties	of	a	field	definition	—	its	length,	for	example	—	are	set	as	the	second
parameter	of	the	field	creation	method	we	looked	at	in	the	previous	section.	But	there	are	a
few	other	properties	that	we’ll	set	by	chaining	more	method	calls	after	the	creation	of	the
column.	For	example,	this	email	field	is	nullable	and	will	be	placed	(in	MySQL)	right	after
the	last_name	field:

Schema::table('users',	function	(Blueprint	$table)	{

				$table->string('email')->nullable()->after('last_name');

});

The	following	methods	are	used	to	set	additional	properties	of	a	field:

nullable()

Allows	NULL	values	to	be	inserted	into	this	column

default('default	content')

Specifies	the	default	content	for	this	column	if	no	value	is	provided

unsigned()

Marks	integer	columns	as	unsigned

first()	(MySQL	only)
Places	the	column	first	in	the	column	order

after(colName)	(MySQL	only)
Places	the	column	after	another	column	in	the	column	order

unique()

Adds	a	UNIQUE	index

primary()

Adds	a	primary	key	index

index()

Adds	a	basic	index
Note	that	unique(),	primary(),	and	index()	can	also	be	used	outside	of	the	fluent	column
building	context,	which	we’ll	cover	later.

Dropping	tables
If	you	want	to	drop	a	table,	there’s	a	drop	method	on	Schema	that	takes	one	parameter,	the	table
name:

Schema::drop('contacts');

Modifying	columns
To	modify	a	column,	just	write	the	code	you	would	write	to	create	the	column	as	if	it	were
new,	and	then	append	a	call	to	the	change()	method	after	it.

REQUIRED	DEPENDENCY	BEFORE	MODIFYING	COLUMNS
Before	you	modify	any	columns	(or	drop	any	columns	in	SQLite),	you’ll	need	to	add	the	doctrine/dbal	package
as	a	requirement	in	your	composer.json,	and	run	composer	update	to	bring	it	in.

So,	if	we	have	a	string	column	named	name	that	has	a	length	of	255	and	we	want	to	change	its
length	to	100,	this	is	how	we	would	write	it:

Schema::table('users',	function	($table)	{

				$table->string('name',	100)->change();

});

The	same	is	true	if	we	want	to	adjust	any	of	its	properties	that	aren’t	defined	in	the	method
name.	To	make	a	field	nullable,	we	do	this:

Schema::table('contacts',	function	($table)	{

				$table->string('deleted_at')->nullable()->change();

});

Here’s	how	we	rename	a	column:

Schema::table('contacts',	function	($table)

{

				$table->renameColumn('promoted',	'is_promoted');

});

And	this	is	how	we	drop	a	column:

Schema::table('contacts',	function	($table)

{

				$table->dropColumn('votes');

});

MODIFYING	MULTIPLE	COLUMNS	AT	ONCE	IN	SQLITE
If	you	try	to	drop	or	modify	multiple	columns	within	a	single	migration	closure	and	you	are	using	SQLite,	you’ll
run	into	errors.

In	Chapter	12	I’ll	recommend	that	you	use	SQLite	for	your	testing	database,	so	even	if	you’re	using	a	more
traditional	database,	you	may	want	to	consider	this	a	limitation	for	testing	purposes.

However,	you	don’t	have	to	create	a	new	migration	for	each.	Instead,	just	create	multiple	calls	to
Schema::table()	within	the	up()	method	of	your	migration:

public	function	up()

{

				Schema::table('contacts',	function	(Blueprint	$table)

				{

								$table->dropColumn('is_promoted');

				});

				Schema::table('contacts',	function	(Blueprint	$table)

				{

								$table->dropColumn('alternate_email');

				});

}

Indexes	and	foreign	keys
We’ve	covered	how	to	create,	modify,	and	delete	columns.	Let’s	move	on	to	indexing	and
relating	them.

Adding	indexes
Check	out	Example	8-3	for	examples	of	how	to	add	indexes	to	your	column.

Example	8-3.	Adding	column	indexes	in	migrations
//	after	columns	are	created...

$table->primary('primary_id');	//	Primary	key;	unnecessary	if	used	increments()

$table->primary(['first_name',	'last_name']);	//	Composite	keys

$table->unique('email');	//	Unique	index

$table->unique('email',	'optional_custom_index_name');	//	Unique	index

$table->index('amount');	//	Basic	index

$table->index('amount',	'optional_custom_index_name');	//	Basic	index

Note	that	the	first	example	(primary())	is	not	necessary	if	you’re	using	the	increments()
method	to	create	your	index;	this	will	automatically	add	a	primary	key	index	for	you.

Removing	indexes
We	can	remove	indexes	as	shown	in	Example	8-4.

Example	8-4.	Removing	column	indexes	in	migrations
$table->dropPrimary('contacts_id_primary');

$table->dropUnique('contacts_email_unique');

$table->dropIndex('optional_custom_index_name');

//	If	you	pass	an	array	of	column	names	to	dropIndex,	it	will

//	guess	the	index	names	for	you	based	on	the	generation	rules

$table->dropIndex(['email',	'amount']);

Adding	and	removing	foreign	keys
To	add	a	foreign	key	that	defines	that	a	particular	column	references	a	column	on	another
table,	Laravel’s	syntax	is	simple	and	clear:

$table->foreign('user_id')->references('id')->on('users');

Here	we’re	adding	a	foreign	index	on	the	user_id	column,	showing	that	it	references	the	id
column	on	the	users	table.	Couldn’t	get	much	simpler.

If	we	want	to	specify	foreign	key	constraints,	we	can	do	that	too,	with	onDelete()	and
onUpdate().	For	example:

$table->foreign('user_id')

				->references('id')

				->on('users')

				->onDelete('cascade');

To	drop	an	index,	we	can	either	delete	it	by	referencing	its	index	name	(which	is
automatically	generated	by	combining	the	names	of	the	columns	and	tables	being	referenced):

$table->dropForeign('contacts_user_id_foreign');

or	by	passing	it	an	array	of	the	fields	that	it’s	referencing	on	the	local	table:

$table->dropForeign(['user_id']);

Running	Migrations
Once	you	have	your	migrations	defined,	how	do	you	run	them?	There’s	an	Artisan	command
for	that:

php	artisan	migrate

This	command	runs	all	“outstanding”	migrations.	Laravel	keeps	track	of	which	migrations
you	have	run	and	which	you	haven’t.	Every	time	you	run	this	command,	it	checks	whether
you’ve	run	all	available	migrations,	and	if	you	haven’t,	it’ll	run	any	that	remain.

There	are	a	few	options	in	this	namespace	that	you	can	work	with.	First,	you	can	run	your
migrations	and	your	seeds	(which	we’ll	cover	next):

php	artisan	migrate	--seed

You	can	also	run	any	of	the	following	commands:
migrate:install	creates	the	database	table	that	keeps	track	of	which	migrations	you
have	and	haven’t	run;	this	is	run	automatically	when	you	run	your	migrations.

migrate:reset	rolls	back	every	database	migration	you’ve	run	on	this	install.

migrate:refresh	rolls	back	every	database	migration	you’ve	run	on	this	install,	and	then
runs	every	migration	available.	It’s	the	same	as	running	migrate:reset	and	then	migrate,
one	after	the	other.

migrate:rollback	rolls	back	just	the	migrations	that	ran	the	last	time	you	ran	migrate,
or,	with	the	added	option	--step=1,	rolls	back	the	number	of	migrations	you	specify.

migrate:status	shows	a	table	listing	every	migration,	with	a	Y	or	N	next	to	each	showing
whether	or	not	it	has	run	yet	in	this	environment.

MIGRATING	WITH	HOMESTEAD/VAGRANT
If	you’re	running	migrations	on	your	local	machine	and	your	.env	file	points	to	a	database	in	a	Vagrant	box,	your
migrations	will	fail.	You’ll	need	to	ssh	into	your	Vagrant	box	and	then	run	the	migrations	from	there.	The	same	is
true	for	seeds	and	any	other	Artisan	commands	that	affect	or	read	from	the	database.

Seeding
Seeding	with	Laravel	is	so	simple,	it	has	gained	widespread	adoption	as	a	part	of	normal
development	workflows	in	a	way	it	hasn’t	in	previous	PHP	frameworks.	There’s	a
database/seeds	folder	that	comes	with	a	DatabaseSeeder	class,	which	has	a	run()	method	that
is	called	when	you	call	the	seeder.

There	are	two	primary	ways	to	run	the	seeders:	along	with	a	migration,	or	separately.

To	run	a	seeder	along	with	a	migration,	just	add	--seed	to	any	migration	call:

php	artisan	migrate	--seed

php	artisan	migrate:refresh	--seed

And	to	run	it	independently:

php	artisan	db:seed

php	artisan	db:seed	--class=VotesTableSeeder

This	will	run	whatever	you	have	defined	in	the	run()	methods	of	every	seeder	class	(or	just
the	class	you	passed	to	--class).

Creating	a	Seeder
To	create	a	seeder,	use	the	make:seeder	Artisan	command:

php	artisan	make:seeder	ContactsTableSeeder

You’ll	now	see	a	ContactsTableSeeder	class	show	up	in	the	database/seeds	directory.	Before
we	edit	it,	let’s	add	it	to	the	DatabaseSeeder	class	so	it	will	run	when	we	run	our	seeders:

//	database/seeds/DatabaseSeeder.php

...

				public	function	run()

				{

								$this->call(ContactsTableSeeder::class);

				}

Now	let’s	edit	the	seeder	itself.	The	simplest	thing	we	can	do	there	is	manually	insert	a	record
using	the	DB	facade:

<?php

use	Illuminate\Database\Seeder;

use	Illuminate\Database\Eloquent\Model;

class	ContactsTableSeeder	extends	Seeder

{

				public	function	run()

				{

								DB::table('contacts')->insert([

												'name'	=>	'Lupita	Smith'

												'email'	=>	'lupita@gmail.com',

]);

				}

}

This	will	get	us	a	single	record,	which	is	a	good	start.	But	for	truly	functional	seeds,	you’ll
likely	want	to	loop	over	some	sort	of	random	generator	and	run	this	insert()	many	times,
right?

Model	Factories
Model	factories	define	one	(or	more)	patterns	for	creating	fake	entries	for	your	database
tables.	By	default	they’re	named	after	an	Eloquent	class,	but	you	can	also	just	name	them	after
the	table	name	if	you’re	not	going	to	work	with	Eloquent.	Here’s	the	same	table	set	up	both
ways:

$factory->define(User::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

];

});

$factory->define('users',	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

];

});

Theoretially	you	can	name	these	factories	anything	you	like,	but	naming	the	factory	after
your	Eloquent	class	is	the	most	idiomatic	approach.

Creating	a	model	factory
Model	factories	are	defined	in	database/factories/ModelFactory.php.	Each	factory	has	a	name
and	a	definition	of	how	to	create	a	new	instance	of	the	defined	class.	The	$factory->define()
method	takes	the	factory	name	as	the	first	parameter	and	a	closure	that’s	run	for	each
generation	as	the	second	parameter.

The	simplest	factory	we	could	define	might	look	something	like	this:

$factory->define(Contact::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	'Lupita	Smith',

								'email'	=>	'lupita@gmail.com',

];

});

Now	we	can	use	the	factory()	global	helper	to	create	an	instance	of	Contact	in	our	seeding
and	testing:

//	Create	one

$contact	=	factory(Contact::class)->create();

//	Create	many

factory(Contact::class,	20)->create();

However,	if	we	used	that	factory	to	create	20	contacts,	all	20	would	have	the	same
information.	That’s	less	useful.

We	will	get	even	more	benefit	from	model	factories	when	we	take	advantage	of	the	instance
of	Faker	that’s	passed	into	the	closure;	Faker	makes	it	easy	to	randomize	the	creation	of
structured	fake	data.	The	previous	example	now	turns	into	this:

https://github.com/fzaninotto/Faker

$factory->define(Contact::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->email,

];

});

Now,	every	time	we	create	a	fake	contact	using	this	model	factory,	all	of	our	properties	will
be	unique.

Using	a	model	factory
There	are	two	primary	contexts	in	which	we’ll	use	model	factories:	testing	(which	we’ll	cover
in	Chapter	12)	and	seeding,	which	we’re	talking	about	here.	Let’s	write	a	seeder	using	a	model
factory;	take	a	look	at	Example	8-5.

Example	8-5.	Using	model	factories
factory(Post::class)->create([

				'title'	=>	'My	greatest	post	ever'

]);

factory(User::class,	20)->create()->each(function	($u)	use	($post)	{

				$post->comments()->save(factory(Comment::class)->make([

								'user_id'	=>	$u->id

]));

});

When	we’re	using	a	factory,	we	use	the	factory()	global	helper,	and	pass	it	the	name	of	the
factory	—	which,	as	we	just	saw,	is	the	name	of	the	Eloquent	class	we’re	generating	an
instance	of.	That	returns	the	factory,	and	then	we	can	run	one	of	two	methods	on	it:	make()	or
create().

Both	methods	generate	an	instance	of	this	class,	using	the	definition	in	modelFactory.php.	The
difference	is	that	make()	creates	the	instance	but	doesn’t	(yet)	save	it	to	the	database,	whereas
create()	saves	it	to	the	database	instantly.

The	second	example	will	make	more	sense	once	we	cover	relationships	in	Eloquent	later	in
this	chapter.

Overriding	properties	when	calling	a	model	factory
If	you	pass	an	array	to	either	make()	or	create(),	you	can	override	specific	keys,	like	we	did
in	Example	8-7	to	set	the	user_id	on	the	comment	and	to	manually	set	the	title	of	our	post.

Generating	more	than	one	instance	with	a	model	factory
If	you	pass	a	number	as	the	second	parameter	to	the	factory()	helper,	you	can	specify	that
you’re	creating	more	than	one	instance.	Instead	of	returning	a	single	instance,	it’ll	return	a
collection	of	instances.	This	means	you	can	treat	the	result	like	an	array,	you	can	associate
each	of	its	instances	with	another	entity,	or	you	can	use	other	entity	methods	on	each	instance
—	like	we	used	each()	in	Example	8-5	to	add	a	comment	from	each	newly	created	user.

Defining	and	accessing	multiple	model	factory	types
Let’s	go	back	to	modelFactory.php	for	a	second.	We	have	a	Contact	factory	defined:

$factory->define(Contact::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->email,

];

});

But	sometimes	you	need	more	than	one	factory	for	a	class	of	object.	What	if	we	need	to	be
able	to	add	some	contacts	who	are	very	important	people	(VIPs)?	We	can	define	a	second
factory	type	for	this,	as	seen	in	Example	8-6.

Example	8-6.	Defining	multiple	factory	types	for	the	same	model
$factory->define(Contact::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->email,

];

});

$factory->defineAs(Contact::class,	'vip',	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->email,

								'vip'	=>	true,

];

});

But	that’s	a	lot	of	duplication,	right?	Thankfully,	we	can	make	any	given	model	factory	extend
another,	and	then	it	can	just	override	one	or	a	few	properties.	Let’s	have	our	“VIP”	contact
now	just	extend	the	previous	by	using	$factory->raw(),	as	shown	in	Example	8-7.

Example	8-7.	Extending	a	factory	type
$factory->define(Contact::class,	function	(Faker\Generator	$faker)	{

				return	[

								'name'	=>	$faker->name,

								'email'	=>	$faker->email,

];

});

$factory->defineAs(

				Contact::class,

				'vip',

				function	(Faker\Generator	$faker)	use	($factory)	{

								$contact	=	$factory->raw(Contact::class);

								return	array_merge($contact,	['vip'	=>	true]);

				});

Now,	let’s	make	a	specific	type:

$vip	=	factory(Contact::class,	'vip')->create();

$vips	=	factory(Contact::class,	'vip',	3)->create();

Query	Builder
Now	that	you’re	connected	and	you’ve	migrated	and	seeded	your	tables,	let’s	get	started	with
how	to	use	the	database	tools.	At	the	core	of	every	piece	of	Laravel’s	database	functionality	is
the	query	builder,	a	fluent	interface	for	interacting	with	your	database.

WHAT	IS	A	FLUENT	INTERFACE?

A	fluent	interface	is	one	that	primarily	uses	method	chaining	to	provide	a	simpler	API	to	the	end	user.	Rather	than
expecting	all	of	the	relevant	data	to	be	passed	into	either	a	constructor	or	a	method	call,	fluent	call	chains	can	be	built
gradually,	with	consecutive	calls.	Consider	this	comparison:

//	Non-fluent:

$users	=	DB::select(['table'	=>	'users',	'where'	=>	['type'	=>	'donor']]);

//	Fluent:

$users	=	DB::table('users')->where('type',	'donor')->get();

Laravel’s	database	architecture	can	connect	to	MySQL,	Postgres,	SQLite,	and	SQL	Server
through	a	single	interface,	with	just	the	change	of	a	few	configuration	settings.

If	you’ve	ever	used	a	PHP	framework,	you’ve	likely	used	a	tool	that	allows	you	to	run	“raw”
SQL	queries	with	basic	escaping	for	security.	The	query	builder	is	that,	with	a	lot	of
convenience	layers	and	helpers	on	top,	so	let’s	start	there.

Basic	Usage	of	the	DB	Facade
Before	we	get	into	building	complex	queries	with	fluent	method	chaining,	let’s	take	a	look	at
a	few	sample	DB	facade	commands.	The	DB	facade	is	used	both	for	query	builder	chaining	and
for	simpler	raw	queries,	as	illustrated	in	Example	8-8.

Example	8-8.	Sample	raw	SQL	and	query	builder	usage
//	basic	statement

DB::statement('drop	table	users')

//	raw	select,	and	parameter	binding

DB::select('select	*	from	contacts	where	validated	=	?',	[true]);

//	select	using	the	fluent	builder

$users	=	DB::table('users')->get();

//	joins	and	other	complex	calls

DB::table('users')

				->join('contacts',	function	($join)	{

								$join->on('users.id',	'=',	'contacts.user_id')

													->where('contacts.type',	'donor');

				})

				->get();

Raw	SQL
As	we	saw	in	Example	8-1,	it’s	possible	to	make	any	raw	call	to	the	database	using	the	DB
facade	and	the	statement()	method:	DB::statement('SQL	statement	here').

But	there	are	also	specific	methods	for	various	common	actions:	select(),	insert(),
update(),	and	delete().	These	are	still	raw	calls,	but	there	are	differences.	First,	using
update()	and	delete()	will	return	the	number	of	rows	affected,	whereas	statement()	won’t;
second,	with	these	methods	it’s	clearer	to	future	developers	exactly	what	sort	of	statement
you’re	making.

Raw	selects
The	simplest	of	the	specific	DB	methods	is	select().	You	can	run	it	without	any	additional
parameters:

$users	=	DB::select('select	*	from	users');

This	will	return	a	collection	of	stdClass	objects.

ILLUMINATE	COLLECTIONS

Prior	to	Laravel	5.3,	the	DB	facade	returned	a	stdClass	object	for	methods	that	return	only	one	row	(like	first()),	and
an	array	for	any	that	return	multiple	rows	(like	all()).	In	Laravel	5.3,	the	DB	facade,	like	Eloquent,	returns	a	collection
for	any	method	that	returns	(or	can	return)	multiple	rows.	The	DB	facade	returns	an	instance	of
Illuminate\Support\Collection	and	Eloquent	returns	an	instance	of	Illuminate\Database\Eloquent\Collection,
which	extends	Illuminate\Support\Collection	with	a	few	Eloquent-specific	methods.

Collection	is	like	a	PHP	array	with	superpowers,	allowing	you	to	run	map(),	filter(),	reduce(),	each(),	and	much
more	on	your	data.	You	can	learn	more	about	collections	in	Chapter	17.

Parameter	bindings	and	named	bindings
Laravel’s	database	architecture	allows	for	the	use	of	PDO	parameter	binding,	which	protects
your	queries	from	potential	SQL	attacks.	Passing	a	parameter	to	a	statement	is	as	simple	as
replacing	the	value	in	your	statement	with	a	?,	then	adding	the	value	to	the	second	parameter
of	your	call:

$usersOfType	=	DB::select(

				'select	*	from	users	where	type	=	?',

				[$type]

);

You	can	also	name	those	parameters	for	clarity:

$usersOfType	=	DB::select(

				'select	*	from	users	where	type	=	:type',

				['type'	=>	$userType]

);

Raw	inserts
From	here,	the	raw	commands	all	look	pretty	much	the	same.	Raw	inserts	look	like	this:

DB::insert(

				'insert	into	contacts	(name,	email)	values	(?,	?)',

				['sally',	'sally@me.com']

);

Raw	updates
Updates	look	like	this:

$countUpdated	=	DB::update(

				'update	contacts	set	status	=	?	where	id	=	?',

				['donor',	$id]

);

Raw	deletes
And	deletes	look	like	this:

$countDeleted	=	DB::delete(

				'delete	from	contacts	where	archived	=	?',

				[true]

);

Chaining	with	the	Query	Builder
Up	until	now,	we	haven’t	actually	used	the	query	builder,	per	se.	We’ve	just	used	simple
method	calls	on	the	DB	facade.	Let’s	actually	build	some	queries.

The	query	builder	makes	it	possible	to	chain	methods	together	to,	you	guessed	it,	build	a
query.	At	the	end	of	your	chain	you’ll	use	some	method	—	likely	get()	—	to	trigger	the
actual	execution	of	the	query	you’ve	just	built.

Let’s	take	a	look	at	a	quick	example:

$usersOfType	=	DB::table('users')

				->where('type',	$type)

				->get();

Here,	we	built	our	query	—	users	table,	$type	type	—	and	then	we	executed	the	query	and	got
our	result.

Let’s	take	a	look	at	what	methods	the	query	builder	allows	you	to	chain.	The	methods	can	be
split	up	into	what	I’ll	call	constraining	methods,	modifying	methods,	and	ending/returning
methods.

Constraining	methods
These	methods	take	the	query	as	it	is	and	constrain	it	to	return	a	smaller	subset	of	possible
data:

select()

Allows	you	to	choose	which	columns	you’re	selecting:

$emails	=	DB::table('contacts')

				->select('email',	'email2	as	second_email')

				->get();

//	Or

$emails	=	DB::table('contacts')

				->select('email')

				->addSelect('email2	as	second_email')

				->get();

where()

Allows	you	to	limit	the	scope	of	what’s	being	returned	using	WHERE.	By	default,	the
signature	of	the	where()	method	is	that	it	takes	three	parameters	—	the	column,	the
comparison	operator,	and	the	value:

$newContacts	=	DB::table('contact')

				->where('created_at',	'>',	Carbon::now()->subDay())

				->get();

However,	if	your	comparison	is	=,	which	is	the	most	common	comparison,	you	can	drop
the	second	operator:	$vipContacts	=	DB::table('contacts')->where('vip',true)-
>get();.

If	you	want	to	combine	where()	statements,	you	can	either	chain	them	after	each	other,	or
pass	an	array	of	arrays:

$newVips	=	DB::table('contacts')

				->where('vip',	true)

				->where('created_at',	'>',	Carbon::now()

				->subDay());

//	Or

$newVips	=	DB::table('contacts')->where([

				['vip',	true],

				['created_at',	'>',	Carbon::now()->subDay()],

]);

orWhere()

Creates	simple	OR	WHERE	statements:

$priorityContacts	=	DB::table('contacts')

				->where('vip',	true)

				->orWhere('created_at',	'>',	Carbon::now()->subDay())

				->get();

To	create	a	more	complex	OR	WHERE	statement	with	multiple	conditions,	pass	orWhere()
a	closure:

$contacts	=	DB::table('contacts')

				->where('vip',	true)

				->orWhere(function	($query)	{

								$query->where('created_at',	'>',	Carbon::now()->subDay())

												->where('trial',	false);

				})

				->get();

POTENTIAL	CONFUSION	WITH	MULTIPLE	WHERE	AND
ORWHERE	CALLS

If	you	are	using	orWhere()	calls	in	conjunction	with	multiple	where()	calls,	you	need	to	be	very	careful	to	ensure
the	query	is	doing	what	you	think	it	is.	This	isn’t	because	of	any	fault	with	Laravel,	but	because	a	query	like	the
following	might	not	do	what	you	expect:

$canEdit	=	DB::table('users')

				->where('admin',	true)

				->orWhere('plan',	'premium')

				->where('is_plan_owner',	true)

				->get();

SELECT	*	FROM	users

				WHERE	admin	=	1

				OR	plan	=	'premium'

				AND	is_plan_owner	=	1;

If	you	want	to	write	SQL	that	says	“if	this	OR	(this	and	this),”	which	is	clearly	the	intention	in	the	previous
example,	you’ll	want	to	pass	a	closure	into	the	orWhere()	call:

$canEdit	=	DB::table('users')

				->where('admin',	true)

				->orWhere(function	($query)	{

								$query->where('plan',	'premium')

												->where('is_plan_owner',	true);

				})

				->get();

SELECT	*	FROM	users

				WHERE	admin	=	1

				OR	(plan	=	'premium'	AND	is_plan_owner	=	1);

whereBetween(colName,	[low,	high])

Allows	you	to	scope	a	query	to	return	only	rows	where	a	column	is	between	two	values
(inclusive	of	the	two	values):

$mediumDrinks	=	DB::table('drinks')

				->whereBetween('size',	[6,	12])

				->get();

The	same	works	for	whereNotBetween(),	but	it	will	select	the	inverse.

whereIn(colName,	[1,	2,	3])

Allows	you	to	scope	a	query	to	return	only	rows	where	a	column	is	in	an	explicitly
provided	list	of	options:	$closeBy	=	DB::table('contacts')->whereIn(state,	[FL,
GA,	AL])->get().

$closeBy	=	DB::table('contacts')->whereIn('state',	['FL',	'GA',	'AL'])->get()

The	same	works	for	whereNotIn(),	but	it	will	select	the	inverse.

whereNull(colName)	and	whereNotNull(colName)
Allow	you	to	select	only	rows	where	a	given	column	is	NULL	or	is	NOT	NULL,	respectively.

whereRaw()

Allows	you	to	pass	in	a	raw,	unescaped	string	to	be	added	after	the	WHERE	statement:
$goofs	=	DB::table('contacts')->whereRaw('id	=	12345')->get().

BEWARE	OF	SQL	INJECTION!
Any	SQL	queries	passed	to	whereRaw()	will	not	be	escaped.	Use	this	method	carefully	and	infrequently;	this	is	the
prime	opportunity	for	SQL	injection	attacks	in	your	app.

whereExists()

Allows	you	to	select	only	rows	that,	when	passed	into	a	provided	subquery,	return	at	least
one	row.	Imagine	you	only	want	to	get	those	users	who	have	left	at	least	one	comment:

$commenters	=	DB::table('users')

				->whereExists(function	($query)	{

								$query->select('id')

												->from('comments')

												->whereRaw('comments.user_id	=	users.id');

				})

				->get();

distinct()

Selects	only	distinct	rows.	Usually	this	is	paired	with	select(),	because	if	you	use	a
primary	key,	there	will	be	no	duplicated	rows:	$lastNames	=	DB::table('contacts')-
>select('last_name')->distinct()->get().

Modifying	methods
These	methods	change	the	way	the	query’s	results	will	be	output,	rather	than	just	limiting	its
results:

orderBy(colName,	direction)

Orders	the	results.	The	second	parameter	may	be	either	asc	(the	default)	or	desc:

$contacts	=	DB::table('contacts')

				->orderBy('last_name',	'asc')

				->get();

groupBy()	and	having()	or	havingRaw()
Groups	your	results	by	a	column.	Optionally,	having()	and	havingRaw()	allow	you	to
filter	your	results	based	on	properties	of	the	groups.	For	example,	you	could	look	for
only	cities	with	at	least	30	people	in	them:

$populousCities	=	DB::table('contacts')

				->groupBy('city')

				->havingRaw('count(contact_id)	>	30')

				->get();

skip()	and	take()

Most	often	used	for	pagination,	these	allow	you	to	define	how	many	rows	to	return	and
how	many	to	skip	before	starting	the	return	—	like	a	page	number	and	a	page	size	in	a
pagination	system:

$page4	=	DB::table('contacts')->skip(30)->take(10)->get();

latest(colName)	and	oldest(colName)
Sort	by	the	passed	column	(or	created_at	if	no	column	name	is	passed)	in	descending
(latest())	or	ascending	(oldest())	order.

inRandomOrder()

Sorts	the	result	randomly.

Ending/returning	methods
These	methods	stop	the	query	chain	and	trigger	the	execution	of	the	SQL	query:

get()

Gets	all	results	for	the	built	query:

$contacts	=	DB::table('contacts')->get();

$vipContacts	=	DB::table('contacts')->where('vip',	true)->get();

first()	and	firstOrFail()
Get	only	the	first	result	—	like	get(),	but	with	a	LIMIT	1	added:

$newestContact	=	DB::table('contacts')

				->orderBy('created_at',	'desc')

				->first();

first()

Fails	silently	if	there	are	no	results,	whereas	firstOrFail()	will	throw	an	exception.
If	you	pass	an	array	of	column	names	to	either	method,	they’ll	return	the	data	for	just
those	columns	instead	of	all	columns.

find(id)	and	findOrFail(id)
Like	first(),	but	you	pass	in	an	ID	value	that	corresponds	to	the	primary	key	to	look	up.
find()	fails	silently	if	a	row	with	that	ID	doesn’t	exist,	while	findOrFail()	will	throw
an	exception:

$contactFive	=	DB::table('contacts')->find(5);

value()

Plucks	just	the	value	from	a	single	field	from	the	first	row.	Like	first(),	but	if	you	only
want	a	single	column:

$newestContactEmail	=	DB::table('contacts')

				->orderBy('created_at',	'desc')

				->value('email');

count()

Returns	an	integer	count	of	all	of	the	matching	results:

$countVips	=	DB::table('contacts')

				->where('vip',	true)

				->count();

min()	and	max()
Return	the	minimum	or	maximum	value	of	a	particular	column:

$highestCost	=	DB::table('orders')->max('amount');

sum()	and	avg()
Return	the	sum	or	average	of	all	of	the	values	in	a	particular	column:

$averageCost	=	DB::table('orders')

				->where('status',	'completed')

				->avg('amount');

Writing	raw	queries	inside	query	builder	methods	with	DB::raw
We’ve	already	seen	a	few	custom	methods	for	raw	statements	—	for	example,	select()	has	a
selectRaw()	counterpart	that	allows	you	to	pass	in	a	string	for	the	query	builder	to	place	after
the	WHERE	statement.

You	can	also,	however,	pass	in	the	result	of	a	DB::raw()	call	to	almost	any	method	in	the
query	builder	to	achieve	the	same	result:

$contacts	=	DB::table('contacts')

				->select(DB::raw('*,	(score	*	100)	AS	integer_score'))

				->get();

Joins
Joins	can	sometimes	be	a	pain	to	define,	and	there’s	only	so	much	a	framework	can	do	to
make	them	simpler,	but	the	query	builder	does	its	best.	Let’s	look	at	a	sample:

$users	=	DB::table('users')

				->join('contacts',	'users.id',	'=',	'contacts.user_id')

				->select('users.*',	'contacts.name',	'contacts.status')

				->get();

The	join()	method	creates	an	inner	join.	You	can	also	chain	together	multiple	joins	one	after
another,	or	use	leftJoin()	to	get	a	left	join.

Finally,	you	can	create	more	complex	joins	by	passing	a	closure	into	the	join()	method:

DB::table('users')

				->join('contacts',	function	($join)	{

								$join

												->on('users.id',	'=',	'contacts.user_id')

												->orOn('users.id',	'=',	'contacts.proxy_user_id');

				})

				->get();

Unions
You	can	union	two	queries	together	by	creating	them	first	and	then	using	the	union()	or
unionAll()	method	to	union	them:

$first	=	DB::table('contacts')

				->whereNull('first_name');

$contacts	=	DB::table('contacts')

				->whereNull('last_name')

				->union($first)

				->get();

Inserts
The	insert()	method	is	pretty	simple.	Pass	it	an	array	to	insert	a	single	row	or	an	array	of
arrays	to	insert	multiple	rows,	and	use	insertGetId()	instead	of	insert()	to	get	the
autoincrementing	primary	key	ID	back	as	a	return:

$id	=	DB::table('contacts')->insertGetId([

				'name'	=>	'Abe	Thomas',

				'email'	=>	'athomas1987@gmail.com',

]);

DB::table('contacts')->insert([

				['name'	=>	'Tamika	Johnson',	'email'	=>	'tamikaj@gmail.com'],

				['name'	=>	'Jim	Patterson',	'email'	=>	'james.patterson@hotmail.com'],

]);

Updates
Updates	are	also	simple.	Create	your	update	query	and,	instead	of	get()	or	first(),	just	use
update()	and	pass	it	an	array	of	parameters:

DB::table('contacts')

				->where('points',	'>',	100)

				->update(['status'	=>	'vip']);

You	can	also	quickly	increment	and	decrement	columns	using	the	increment()	and
decrement()	methods.	The	first	parameter	of	each	is	the	column	name,	and	the	second	is
(optionally)	the	number	to	increment/decrement	by:

DB::table('contacts')->increment('tokens',	5);

DB::table('contacts')->decrement('tokens');

Deletes
Deletes	are	even	simpler.	Build	your	query	and	then	end	it	with	delete():

DB::table('users')

				->where('last_login',	'<',	Carbon::now()->subYear())

				->delete();

You	can	also	truncate	the	table,	which	both	deletes	every	row	and	also	resets	the
autoincrementing	ID:

DB::table('contacts')->truncate();

JSON	operations
If	you	have	JSON	columns,	you	can	update	or	select	rows	based	on	aspects	of	the	JSON
structure	by	using	the	arrow	syntax	to	traverse	children:

//	Select	all	records	where	the	"isAdmin"	property	of	the	"options"

//	JSON	column	is	set	to	true

DB::table('users')->where('options->isAdmin',	true)->get();

//	Update	all	records,	setting	the	"verified"	property

//	of	the	"options"	JSON	column	to	true

DB::table('users')->update(['options->isVerified',	true]);

This	is	a	new	feature	in	Laravel	5.3.

Transactions
If	you’re	not	familiar	with	database	transactions,	they’re	a	tool	that	allows	you	to	wrap	up	a
series	of	database	queries	to	be	performed	in	a	batch,	which	you	can	choose	to	roll	back,
undoing	the	entire	series	of	queries.	Transactions	are	often	used	to	ensure	that	all	or	none,	but
not	some,	of	a	series	of	related	queries	are	performed	—	if	one	fails,	the	ORM	will	roll	back
the	entire	series	of	queries.

With	the	Laravel	query	builder ’s	transaction	feature,	if	any	exceptions	are	thrown	at	any	point
within	the	transaction	closure,	all	the	queries	in	the	transaction	will	be	rolled	back.	If	the
transaction	closure	finishes	successfully,	all	the	queries	will	be	committed	and	not	rolled
back.

Let’s	take	a	look	at	Example	8-9.

Example	8-9.	A	simple	database	transaction
DB::transaction(function	()	use	($userId,	$numVotes)

{

				//	Possibly	failing	DB	query

				DB::table('users')

								->where('id',	$userId)

								->update(['votes'	=>	$numVotes]);

				//	Caching	query	that	we	don't	want	to	run	if	the	above	query	fails

				DB::table('votes')

								->where('user_id',	$userId)

								->delete();

});

We	clearly	had	some	previous	process	that	summarized	the	number	of	votes	from	the	votes
table.	We	want	to	cache	that	number	on	the	users	table	and	then	wipe	those	votes	from	the
votes	table.	But,	of	course,	we	don’t	want	to	wipe	the	votes	until	the	update	to	the	users	table
has	run	successfully.	And	we	don’t	want	to	keep	the	updated	number	of	votes	on	the	users
table	if	the	votes	table	deletion	fails.

If	anything	goes	wrong	with	either	query,	the	other	won’t	be	applied.	That’s	the	magic	of
database	transactions.

Note	that	you	can	also	manually	begin	and	end	transactions	—	and	this	applies	both	for	query
builder	queries	and	for	Eloquent	queries.	Start	with	DB::beginTransaction(),	end	with
DB::commit(),	and	abort	with	DB::rollBack().

Introduction	to	Eloquent
Eloquent	is	an	ActiveRecord	ORM,	which	means	it’s	a	database	abstraction	layer	that	provides
a	single	interface	to	interact	with	multiple	database	types.	“ActiveRecord”	means	that	a	single
Eloquent	class	is	responsible	for	not	only	providing	the	ability	to	interact	with	the	table	as	a
whole	(e.g.,	User::all()	gets	all	users),	but	also	representing	an	individual	table	row	(e.g.,
$sharon	=	new	User).	Additionally,	each	instance	is	capable	of	managing	its	own	persistence;
you	can	call	$sharon->save()	or	$sharon->delete().

Eloquent	has	a	primary	focus	on	simplicity,	and	like	the	rest	of	the	framework,	it	relies	on
“convention	over	configuration”	to	allow	you	to	build	powerful	models	with	minimal	code.

For	example,	you	can	perform	all	of	the	operations	in	Example	8-11	with	the	model	defined
in	Example	8-10.

Example	8-10.	The	simplest	Eloquent	model
<?php

use	Illuminate\Database\Eloquent\Model;

class	Contact	extends	Model	{}

Example	8-11.	Operations	achievable	with	the	simplest	Eloquent	model
public	function	save(Request	$request)

{

				//	Create	and	save	a	new	contact	from	user	input

				$contact	=	new	Contact();

				$contact->first_name	=	$request->input('first_name');

				$contact->last_name	=	$request->input('last_name');

				$conatct->email	=	$request->input('email');

				$contact->save();

				return	redirect('contacts');

}

public	function	show($contactId)

{

				//	Return	a	JSON	representation	of	a	Contact	based	on	a	URL	segment;

				//	if	the	contact	doesn't	exist,	throw	an	exception

				return	Contact::findOrFail($contactId);

}

public	function	vips()

{

				//	Unnecessarily	complex	example,	but	still	possible	with	basic	Eloquent

				//	class;	adds	a	"formalName"	property	to	every	VIP	entry

				return	Contact::where('vip',	true)->get()->map(function	($contact)	{

								$contact->formalName	=	"The	exalted	{$contact->first_name}	of	the

									{$contact->last_name}s";

								return	$contact;

				});

}

How?	Convention.	Eloquent	assumes	the	table	name	(Contact	becomes	contacts),	and	with
that	you	have	a	fully	functional	Eloquent	model.

Let’s	cover	how	we	work	with	Eloquent	models.

Creating	and	Defining	Eloquent	Models
First,	let’s	create	a	model.	There’s	an	Artisan	command	for	that:

php	artisan	make:model	Contact

This	is	what	we’ll	get,	in	app/Contact.php:

<?php

namespace	App;

use	Illuminate\Database\Eloquent\Model;

class	Contact	extends	Model

{

				//

}

CREATING	A	MIGRATION	ALONG	WITH	YOUR	MODEL
If	you	want	to	automatically	create	a	migration	when	you	create	your	model,	pass	the	-m	or	--migration	flag:

php	artisan	make:model	Contact	--migration

Table	name
The	default	behavior	for	table	names	is	that	Laravel	“snake	cases”	and	pluralizes	your	class
name,	so	SecondaryContact	would	access	a	table	named	secondary_contacts.	If	you’d	like	to
customize	the	name,	set	the	$table	property	explicitly	on	the	model:

				protected	$table	=	'contacts_secondary';

Primary	key
Laravel	assumes,	by	default,	that	each	table	will	have	an	autoincrementing	integer	primary
key,	and	it	will	be	named	id.

If	you	want	to	change	the	name	of	your	primary	key,	change	the	$primaryKey	property:

				protected	$primaryKey	=	'contact_id';

And	if	you	want	to	set	it	to	be	nonincrementing,	use:

				public	$incrementing	=	false;

Timestamps
Eloquent	expects	every	table	to	have	created_at	and	updated_at	timestamp	columns.	If	your
table	won’t	have	them,	disable	the	$timestamps	functionality:

				public	$timestamps	=	false;

You	can	customize	the	format	Eloquent	uses	to	store	your	timestamps	to	the	database	by
setting	the	$dateFormat	class	property	to	a	custom	string.	The	string	will	be	parsed	using
PHP’s	date()	syntax,	so	the	following	example	will	store	the	date	as	seconds	since	the	Unix
epoch:

				protected	$dateFormat	=	'U';

Retrieving	Data	with	Eloquent
Most	of	the	time	you	pull	data	from	your	database	with	Eloquent,	you’ll	use	static	calls	on
your	Eloquent	model.

Let’s	start	by	getting	everything:

$allContacts	=	Contact::all();

That	was	easy.	Let’s	filter	it	a	bit:

$vipContacts	=	Contact::where('vip',	true)->get();

We	can	see	that	the	Eloquent	facade	gives	us	the	ability	to	chain	constraints,	and	from	there
the	constraints	get	very	familiar:

$newestContacts	=	Contact::orderBy('created_at',	'desc')

				->take(10)

				->get();

It	turns	out	that	once	you	move	past	the	initial	facade	name,	you’re	just	working	with
Laravel’s	query	builder.	You	can	do	a	lot	more	—	we’ll	cover	that	soon	—	but	everything	you
can	do	with	the	query	builder	on	the	DB	facade	you	can	do	on	your	Eloquent	objects.

Get	one
Like	we	covered	earlier	in	the	chapter,	you	can	use	first()	to	return	only	the	first	record
from	a	query,	or	find()	to	pull	just	the	record	with	the	provided	ID.	For	either,	if	you	append
“orFail”	to	the	method	name,	it	will	throw	an	exception	if	there	are	no	matching	results.	This
makes	findOrFail()	a	common	tool	in	looking	up	an	entity	by	a	URL	segment	(or	throwing
an	exception	if	a	matching	entity	doesn’t	exist)	like	you	can	see	in	Example	8-12.

Example	8-12.	Using	an	Eloquent	OrFail()	method	in	a	controller	method
//	ContactController

public	function	show($contactId)

{

				return	view('contacts.show')

								->with('contact',	Contact::findOrFail($contactId));

}

Any	single	return	(first(),	firstOrFail(),	find(),	or	findOrFail())	will	return	an
instance	of	the	Eloquent	class.	So,	Contact::first()	will	return	an	instance	of	the	class
Contact	with	the	data	from	row	1	filling	it	out.

EXCEPTIONS
As	you	can	see	in	Example	8-12,	we	don’t	need	to	catch	Eloquent’s	model	not	found	exception
(Illuminate\Database\Eloquent\ModelNotFoundException)	in	our	controllers;	Laravel’s	routing	system	will
catch	them	and	throw	a	404	for	us.

You	could,	of	course,	catch	that	particular	exception	and	handle	it,	if	you’d	like.

Get	many
get()	works	with	Eloquent	just	like	it	does	in	normal	query	builder	calls	—	build	a	query	and
call	get()	at	the	end	to	get	the	results:

$vipContacts	=	Contact::where('vip',	true)->get();

However,	there	is	an	Eloquent-only	method,	all(),	which	you’ll	often	see	people	use	when
they	want	to	get	an	unfiltered	list	of	all	data	in	the	table:

$contacts	=	Contact::all();

USING	GET()	INSTEAD	OF	ALL()
Any	time	you	can	use	all(),	you	could	use	get().	Contact::get()	has	the	same	response	as	Contact::all().
However,	the	moment	you	start	modifying	your	query	—	adding	a	where()	filter,	for	example	—	all()	will	no
longer	work,	but	get()	will	continue	working.

So,	even	though	all()	is	very	common,	I’d	recommend	using	get()	for	everything,	and	ignoring	the	fact	that
all()	even	exists.

The	other	thing	that’s	different	about	Eloquent’s	get()	method	is	that,	prior	to	Laravel	5.3,	it
returned	an	array	instead	of	a	collection.	In	5.3	and	later,	they	both	return	collections.

Chunking	responses	with	chunk()
If	you’ve	ever	needed	to	process	a	large	amount	(thousands	or	more)	of	records	at	a	time,
you	may	have	run	into	memory	or	locking	issues.	Laravel	makes	it	possible	to	break	your
requests	into	smaller	pieces	(chunks)	and	process	them	in	batches,	keeping	the	memory	load
of	your	large	request	smaller.	Example	8-13	illustrates	the	use	of	chunk().

Example	8-13.	Chunking	an	Eloquent	query	to	limit	memory	usage
Contact::chunk(100,	function	($contacts)	{

				foreach	($contacts	as	$contact)		{

								//	Do	something	with	$contact

				}

});

Aggregates
The	aggregates	that	are	available	on	the	query	builder	are	available	on	Eloquent	queries	as
well.	For	example:

$countVips	=	Contact::where('vip',	true)->count();

$sumVotes	=	Contact::sum('votes');

$averageSkill	=	User::avg('skill_level');

Inserts	and	Updates	with	Eloquent
Inserting	and	updating	values	is	one	of	the	places	where	Eloquent	starts	to	diverge	from
normal	query	builder	syntax.

Inserts
There	are	two	primary	ways	to	insert	a	new	record	using	Eloquent.

First,	you	can	create	a	new	instance	of	your	Eloquent	class,	set	your	properties	manually,	and
call	save()	on	that	instance,	like	in	Example	8-14.

Example	8-14.	Inserting	an	Eloquent	record	by	creating	a	new	instance
$contact	=	new	Contact;

$contact->name	=	'Ken	Hirata';

$contact->email	=	'ken@hirata.com';

$contact->save();

//	or

$contact	=	new	Contact([

				'name'	=>	'Ken	Hirata',

				'email'	=>	'ken@hirata.com'

]);

$contact->save();

Until	you	save(),	this	instance	of	Contact	represents	the	contact	fully	—	except	it	has	never
been	saved	to	the	database.	That	means	it	doesn’t	have	an	id,	if	the	application	quits	it	won’t
persist,	and	it	doesn’t	have	its	created_at	and	updated_at	values	set.

You	can	also	pass	an	array	to	Model::create()	to	achieve	the	same	output,	as	shown	in
Example	8-15.

Example	8-15.	Inserting	an	Eloquent	record	by	passing	an	array	to	create()
$contact	=	Contact::create([

				'name'	=>	'Keahi	Hale',

				'email'	=>	'halek481@yahoo.com'

]);

Also	be	aware	that	in	any	context	where	you	are	passing	an	array	(either	to	new	Model(),
Model::create(),	or	Model::update()),	every	property	you	set	via	Model::create()	has	to	be
approved	for	“mass	assignment,”	which	we’ll	cover	shortly.

Note	that	if	you’re	using	Model::create(),	you	don’t	need	to	save()	the	instance	—	that’s
handled	as	a	part	of	the	model’s	create()	method.

Updates
Updating	records	looks	very	similar	to	inserting.	You	can	get	a	specific	instance,	change	its
properties,	and	then	save,	or	you	can	make	a	single	call	and	pass	an	array	of	updated
properties.	Example	8-16	illustrates	the	first	approach.

Example	8-16.	Updating	an	Eloquent	record	by	updating	an	instance	and	saving
$contact	=	Contact::find(1);

$contact->email	=	'natalie@parkfamily.com';

$contact->save();

Since	this	record	already	exists,	it	will	already	have	a	created_at	timestamp	and	an	id,	which
will	stay	the	same,	but	the	updated_at	field	will	be	changed	to	the	current	date	and	time.
Example	8-17	illustrates	the	second	approach.

Example	8-17.	Updating	one	or	more	Eloquent	records	by	passing	an	array	to	the	update()
method
Contact::where('created_at',	'<',	Carbon::now()->subYear())

				->update(['longevity'	=>	'ancient']);

//	or

$contact	=	Contact::find(1);

$contact->update(['longevity'	=>	'ancient']);

This	method	expects	an	array	where	each	key	is	the	column	name	and	each	value	is	the
column	value.

Mass	assignment
We’ve	looked	at	a	few	examples	of	how	to	pass	arrays	of	values	into	Eloquent	class	methods.
However,	none	of	these	will	actually	work	until	you	define	which	fields	are	“fillable”	on	the
model.

The	goal	of	this	is	to	protect	(malicious)	user	input	from	accidentally	setting	new	values	on
fields	you	don’t	want	changed.	Consider	the	common	scenario	in	Example	8-18.

Example	8-18.	Updating	an	Eloquent	model	using	the	entirety	of	a	request’s	input
//	ContactController

public	function	update(Contact	$contact,	Request	$request)

{

				$contact->update($request->all());

}

If	you’re	not	familiar	with	the	Illuminate	Request	object,	Example	8-18	will	take	every	piece
of	user	input	and	pass	it	to	the	update()	method.	That	all()	method	includes	things	like	URL
parameters	and	form	inputs,	so	a	malicious	user	could	easily	add	some	things	in	there,	like	id
and	owner_id,	that	you	likely	don’t	want	updated.

Thankfully,	that	won’t	actually	work	until	you	define	your	model’s	fillable	fields.	You	can
either	whitelist	the	fillable	fields,	or	blacklist	the	“guarded”	fields	to	determine	which	fields
can	or	cannot	be	edited	via	“mass	assignment”	—	i.e.,	by	passing	an	array	of	values	into	either
create()	or	update().	Note	that	nonfillable	properties	can	still	be	changed	by	direct
assignment	(e.g.,	$contact\->password	=	'abc';).	Example	8-19	shows	both	approaches.

Example	8-19.	Using	Eloquent’s	fillable	or	guarded	properties	to	define	mass-assignable	fields
class	Contact

{

				protected	$fillable	=	['name',	'email'];

				//	or

				protected	$guarded	=	['id',	'created_at',	'updated_at',	'owner_id'];

}

USING	REQUEST::ONLY()	WITH	ELOQUENT	MASS	ASSIGNMENT
In	Example	8-18,	we	needed	Eloquent’s	mass	assignment	guard	because	we	were	using	the	all()	method	on	the
request	object	to	pass	the	entirety	of	the	user	input	into	our	Eloquent	object.

Eloquent’s	mass	assignment	protection	is	a	great	tool	here,	but	there’s	also	a	helpful	trick	to	keep	you	from
accepting	just	any	input	from	the	user.

The	Request	class	has	an	only()	method	that	allows	you	to	pluck	only	a	few	keys	from	the	user	input.	So	now
you	can	do	this:

Contact::create($request->only('name',	'email'));

firstOrCreate()	and	firstOrNew()
Sometimes	you	want	to	to	tell	your	application,	“Get	me	an	instance	with	these	properties,	or
if	it	doesn’t	exist,	create	it.”	This	is	where	the	firstOr*()	methods	come	in.

The	firstOrCreate()	and	firstOrNew()	methods	take	an	array	of	keys	and	values	as	their
first	parameter:

$contact	=	Contact::firstOrCreate(['email'	=>	'luis.ramos@myacme.com']);

They’ll	both	look	for	and	retrieve	the	first	record	matching	those	parameters,	and	if	there	are
no	matching	records,	they’ll	create	an	instance	with	those	properties;	firstOrCreate()	will
persist	that	instance	to	the	database	and	then	return	it,	while	firstOrNew()	will	return	it
without	saving	it.

If	you	pass	an	array	of	values	as	the	second	parameter,	those	values	will	be	added	to	the
created	entry	(if	it’s	created),	but	won’t	be	used	to	look	up	whether	the	entry	exists.

Deleting	with	Eloquent
Deleting	with	Eloquent	is	very	similar	to	updating	with	Eloquent,	but	with	soft	deletes,	you
can	archive	your	deleted	items	for	later	inspection	or	even	recovery.

Normal	deletes
The	simplest	way	to	delete	an	instance	is	to	call	the	delete()	method	on	the	instance	itself:

$contact	=	Contact::find(5);

$contact->delete();

However,	if	you	only	have	the	ID,	there’s	no	reason	to	look	up	an	instance	just	to	delete	it;
you	can	pass	an	ID	or	an	array	of	IDs	to	the	model’s	destroy()	method	to	delete	them
directly:

Contact::destroy(1);

//	or

Contact::destroy([1,	5,	7]);

Finally,	you	can	delete	all	of	the	results	of	a	query:

Contact::where('updated_at',	'<',	Carbon::now()->subYear())->delete();

Soft	deletes
Soft	deletes	mark	database	rows	as	deleted	without	actually	deleting	them	from	the	database.
This	gives	you	the	ability	to	inspect	them	later;	to	have	records	that	show	more	than	“no
information,	deleted”	when	displaying	historic	information;	and	to	allow	your	users	(or
admins)	to	restore	some	or	all	data.

The	hard	part	about	handcoding	an	application	with	soft	deletes	is	that	every	query	you	ever
write	will	need	to	exclude	the	soft-deleted	data.	Thankfully,	if	you	use	Eloquent’s	soft	deletes,
every	query	you	ever	make	will	be	scoped	to	ignore	soft	deletes	by	default,	unless	you
explicitly	ask	to	bring	them	back.

Eloquent’s	soft	delete	functionality	requires	a	deleted_at	column	to	be	added	to	the	table.
Once	you	enable	soft	deletes	on	that	Eloquent	model,	every	query	you	ever	write	(unless	you
explicitly	include	soft-deleted	records)	will	be	scoped	to	ignore	soft-deleted	rows.

WHEN	SHOULD	I	USE	SOFT	DELETES?

Just	because	a	feature	exists,	it	doesn’t	mean	you	should	always	use	it.	Many	folks	in	the	Laravel	community	default	to
using	soft	deletes	on	every	project	just	because	the	feature	is	there.	There	are	real	costs	to	soft	deletes,	though.	It’s	pretty
likely	that,	if	you	view	your	database	directly	in	a	tool	like	Sequel	Pro,	you’ll	forget	to	check	the	deleted_at	column	at
least	once.	And	if	you	don’t	clean	up	old	soft-deleted	records,	your	databases	will	get	larger	and	larger.

Here’s	my	recommendation:	don’t	use	soft	deletes	by	default.	Instead,	use	them	when	you	need	them,	and	when	you	do,
clean	out	old	soft	deletes	as	aggressively	as	you	can.	It’s	a	powerful	tool,	but	not	worth	using	unless	you	need	it.

Enabling	soft	deletes
You	enable	soft	deletes	by	doing	three	things:	adding	the	deleted_at	column	in	a	migration,
importing	the	SoftDeletes	trait	in	the	model,	and	adding	the	deleted_at	column	to	your
$dates	property.	There’s	a	softDeletes()	method	available	on	the	query	builder	to	add	the
deleted_at	column	to	a	table,	as	you	can	see	in	Example	8-20.	And	Example	8-21	shows	an
Eloquent	model	with	soft	deletes	enabled.

Example	8-20.	Migration	to	add	the	soft	delete	column	to	a	table
Schema::table('contacts',	function	(Blueprint	$table)	{

				$table->softDeletes();

});

Example	8-21.	An	Eloquent	model	with	soft	deletes	enabled
<?php

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\SoftDeletes;

class	Contact	extends	Model

{

				use	SoftDeletes;	//	use	the	trait

				protected	$dates	=	['deleted_at'];	//	mark	this	column	as	a	date

}

Once	you	make	these	changes,	every	delete()	and	destroy()	call	will	now	set	the
deleted_at	column	on	your	row	to	be	the	current	date	and	time	instead	of	deleting	that	row.
And	all	future	queries	will	exclude	that	row	as	a	result.

Querying	with	soft	deletes
So,	how	do	we	get	soft-deleted	items?

First,	you	can	add	soft-deleted	items	to	a	query:

$allHistoricContacts	=	Contact::withTrashed()->get();

Next,	you	can	use	the	trashed()	method	to	see	if	a	particular	instance	has	been	soft	deleted:

if	($contact->trashed())	{

				//	do	something

}

Finally,	you	can	get	only	soft-deleted	items:

$deletedContacts	=	Contact::onlyTrashed()->get();

Restoring	soft-deleted	entities
If	you	want	to	restore	a	soft-deleted	item,	you	can	run	restore()	on	an	instance	or	a	query:

$contact->restore();

//	or

Contact::onlyTrashed()->where('vip',	true)->restore();

Force-deleting	soft-deleted	entities
You	can	delete	a	soft-deleted	entity	by	calling	forceDelete()	on	an	entity	or	query:

$contact->forceDelete();

//	or

Contact::onlyTrashed()->forceDelete();

Scopes
We’ve	covered	“filtered”	queries,	meaning	any	query	where	we’re	not	just	returning	every
result	for	a	table.	But	every	time	we’ve	written	them	so	far	in	this	chapter,	it’s	been	a	manual
process	using	the	query	builder.

Local	and	global	scopes	in	Eloquent	allow	you	to	define	prebuilt	“scopes”	(filters)	that	you
can	use	either	every	time	a	model	is	queried	(“global”)	or	every	time	you	query	it	with	a
particular	method	chain	(“local”).

Local	scopes
Local	scopes	are	the	simplest	to	understand.	Let’s	take	this	example:

$activeVips	=	Contact::where('vip',	true)->where('trial',	false)->get();

First	of	all,	if	we	write	this	combination	of	query	methods	over	and	over,	it	will	get	tedious.
But	additionally,	the	knowledge	of	how	to	define	someone	being	an	“active	VIP”	is	now
spread	around	our	application.	We	want	to	centralize	that	knowledge.	What	if	we	could	just
write	this?

$activeVips	=	Contact::activeVips()->get();

We	can	—	it’s	called	a	local	scope.	And	it’s	easy	to	define	on	the	Contact	class:

class	Contact

{

				public	function	scopeActiveVips($query)

				{

								return	$query->where('vip',	true)->where('trial',	false);

				}

To	define	a	local	scope,	we	add	a	method	to	the	Eloquent	class	that	begins	with	“scope”	and
then	contains	the	title-cased	version	of	the	scope	name.	This	method	is	passed	a	query	builder
and	needs	to	return	a	query	builder,	but	of	course	you	can	modify	the	query	before	returning
—	that’s	the	whole	point.

You	can	also	define	scopes	that	accept	parameters:

class	Contact

{

				public	function	scopeStatus($query,	$status)

				{

								return	$query->where('status',	$status);

				}

And	you	use	them	in	the	same	way,	just	passing	the	parameter	to	the	scope:

$friends	=	Contact::status('friend')->get();

Global	scopes
Remember	how	we	talked	about	soft	deletes	only	working	if	you	scope	every	query	on	the
model	to	ignore	the	soft-deleted	items?	That’s	a	global	scope.	And	we	can	define	our	own
global	scopes,	which	will	be	applied	on	every	query	made	from	a	given	model.

There	are	two	ways	to	define	a	global	scope:	using	a	closure	or	using	an	entire	class.	In	each,
you’ll	register	the	defined	scope	in	the	model’s	boot()	method.	Let’s	start	with	the	closure
method,	illustrated	in	Example	8-22.

Example	8-22.	Adding	a	global	scope	using	a	closure
...

class	Contact	extends	Model

{

				protected	static	function	boot()

				{

								parent::boot();

								static::addGlobalScope('active',	function	(Builder	$builder)	{

												$builder->where('active',	true);

								});

				}

That’s	it.	We	just	added	a	global	scope,	named	active,	and	every	query	on	this	model	will	be
scoped	to	only	rows	with	active	set	to	true.

Next,	let’s	try	the	longer	way,	as	shown	in	Example	8-23.	Create	a	class	that	implements
Illuminate\Database\Eloquent\Scope,	which	means	it	will	have	an	apply()	method	that
takes	an	instance	of	a	query	builder	and	an	instance	of	the	model.

Example	8-23.	Creating	a	global	scope	class
<?php

namespace	App\Scopes;

use	Illuminate\Database\Eloquent\Scope;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Database\Eloquent\Builder;

class	ActiveScope	implements	Scope

{

				public	function	apply(Builder	$builder,	Model	$model)

				{

								return	$builder->where('active',	true);

				}

}

To	apply	this	scope	to	a	model,	once	again	override	the	parent’s	boot()	method	and	call
addGlobalScope()	on	the	class	using	static,	as	shown	in	Example	8-24.

Example	8-24.	Applying	a	class-based	global	scope
<?php

use	App\Scopes\ActiveScope;

use	Illuminate\Database\Eloquent\Model;

class	Contact	extends	Model

{

				protected	static	function	boot()

				{

								parent::boot();

								static::addGlobalScope(new	ActiveScope);

				}

}

CONTACT	WITH	NO	NAMESPACE
You	may	have	noticed	that	several	of	these	examples	have	used	the	class	Contact,	with	no	namespace.	This	is
abnormal,	and	I’ve	only	done	this	to	save	space	in	the	book.	Normally	even	your	top-level	models	would	live	at
something	like	App\Contact.

Removing	global	scopes
There	are	three	ways	to	remove	a	global	scope,	and	all	three	use	the	withoutGlobalScope()
or	withoutGlobalScopes()	methods.	If	you’re	removing	a	closure-based	scope,	the	first
parameter	of	that	scope’s	addGlobalScope()	registration	will	be	the	key	you	used	to	enable	it:

$allContacts	=	Contact::withoutGlobalScope('active')->get();

If	you’re	removing	a	single	class-based	global	scope,	you	can	pass	the	class	name	to
withoutGlobalScope()	or	withoutGlobalScopes():

Contact::withoutGlobalScope(ActiveScope::class)->get();

Contact::withoutGlobalScopes([ActiveScope::class,	VipScope::class])->get();

Or,	you	can	just	disable	all	global	scopes	for	a	query:

Contact::withoutGlobalScopes()->get();

Customizing	Field	Interactions	with	Accessors,	Mutators,	and	Attribute
Casting
Now	that	we’ve	covered	how	to	get	records	into	and	out	of	the	database	with	Eloquent,	let’s
talk	about	decorating	and	manipulating	the	individual	attributes	on	your	Eloquent	models.

Accessors,	mutators,	and	attribute	casting	all	allow	you	to	customize	the	way	individual
attributes	of	Eloquent	instances	are	input	or	output.	Without	using	any	of	these,	each	attribute
of	your	Eloquent	instance	is	treated	like	a	string,	and	you	can’t	have	any	attributes	on	your
models	that	don’t	exist	on	the	database.	But	we	can	change	that.

Accessors
Accessors	allow	you	to	define	custom	attributes	on	your	Eloquent	models	for	when	you	are
reading	data	from	the	model	instance.	This	may	be	because	you	want	to	change	how	a
particular	column	is	output,	or	because	you	want	to	create	a	custom	attribute	that	doesn’t	exist
in	the	database	table	at	all.

You	define	an	accessor	by	writing	a	method	on	your	model	with	the	following	structure:
get{PascalCasedPropertyName}Attribute.	So,	if	your	property	name	is	first_name,	the
accessor	method	would	be	named	getFirstNameAttribute.

Let’s	try	it	out.	First,	we’ll	decorate	a	preexisting	column	(Example	8-25).

Example	8-25.	Decorating	a	preexisting	column	with	Eloquent	accessors
//	Model	definition:

class	Contact	extends	Model

{

				public	function	getNameAttribute($value)

				{

								return	$value	?:	'(No	name	provided)';

				}

}

//	Accessor	usage:

$name	=	$contact->name;

But	we	can	also	use	accessors	to	define	attributes	that	never	existed	in	the	database,	as	seen	in
Example	8-26.

Example	8-26.	Defining	an	attribute	with	no	backing	column	using	Eloquent	accessors
//	Model	definition:

class	Contact	extends	Model

{

				public	function	getFullNameAttribute()

				{

								return	$this->first_name	.	'	'	.	$this->last_name;

				}

}

//	Accessor	usage:

$fullName	=	$contact->full_name;

Mutators
Mutators	work	the	same	way	as	accessors,	except	they’re	for	determining	how	to	process

setting	the	data	instead	of	getting	it.	Just	like	with	accessors,	you	can	use	it	to	modify	the
process	of	writing	data	to	existing	columns,	or	to	allow	for	setting	columns	that	don’t	exist	in
the	database.

You	define	a	mutator	by	writing	a	method	on	your	model	with	the	following	structure:
set{PascalCasedPropertyName}Attribute.	So,	if	your	property	name	is	first_name,	the
mutator	method	would	be	named	setFirstNameAttribute.

Let’s	try	it	out.	First,	we’ll	add	a	constraint	to	updating	a	preexisting	column	(Example	8-27).

Example	8-27.	Decorating	setting	the	value	of	an	attribute	with	Eloquent	mutators
//	Defining	the	mutator

class	Order	extends	Model

{

				public	function	setAmountAttribute($value)

				{

								$this->attributes['amount']	=	$value	>	0	?	$value	:	0;

				}

}

//	Using	the	mutator

$order->amount	=	'15';

This	reveals	that	the	way	mutators	are	expected	to	“set”	data	on	the	model	is	by	setting	it	in
$this->attributes	with	the	column	name	as	the	key.

Now,	let’s	add	a	proxy	column	for	setting,	as	shown	in	Example	8-28.

Example	8-28.	Allowing	for	setting	the	value	of	a	nonexistent	attribute	with	Eloquent	mutators
//	Defining	the	mutator

class	Order	extends	Model

{

				public	function	setWorkgroupNameAttribute($workgroupName)

				{

								$this->attributes['email']	=	"{$workgroupName}@ourcompany.com";

				}

}

//	Using	the	mutator

$order->workgroup_name	=	'jstott';

As	you	can	probably	guess,	it’s	relatively	uncommon	to	create	a	mutator	for	a	non-existent
column,	because	it	can	be	confusing	to	set	one	property	and	have	it	change	a	different	column
—	but	it	is	possible.

Attribute	casting
You	can	probably	imagine	writing	accessors	to	cast	all	of	your	integer-type	fields	as	integers,
encode	and	decode	JSON	to	store	in	TEXT	column,	or	convert	TINYINT	0	and	1	to	and	from
boolean	values.

Thankfully,	there’s	a	system	for	that	in	Eloquent	already.	It’s	called	attribute	casting,	and	it
allows	you	to	define	that	any	of	your	columns	should	always	be	treated,	both	on	read	and	on
write,	as	if	they	are	of	a	particular	data	type.	The	options	are	listed	in	Table	8-1.

Table	8-1.	Possible	attribute	casting	column	types

Table	8-1.	Possible	attribute	casting	column	types

Type Description

int|integer Casts	with	PHP	(int)

real|float|double Casts	with	PHP	(float)

string Casts	with	PHP	(string)

bool|boolean Casts	with	PHP	(bool)

object Parses	to/from	JSON,	as	a	stdClass	object

array Parses	to/from	JSON,	as	an	array

collection Parses	to/from	JSON,	as	a	collection

date|datetime Parses	from	database	DATETIME	to	Carbon,	and	back

timestamp Parses	from	database	TIMESTAMP	to	Carbon,	and	back

Example	8-29	shows	how	you	use	attribute	casting	in	your	model.

Example	8-29.	Using	attribute	casting	on	an	Eloquent	model
class	Contact

{

				protected	$casts	=	[

								'vip'	=>	'boolean',

								'children_names'	=>	'array',

								'birthday'	=>	'date',

];

}

Date	mutators
You	can	choose	for	particular	columns	to	be	mutated	as	timestamp	columns	by	adding	them	to
the	dates	array,	as	seen	in	Example	8-30.

Example	8-30.	Defining	columns	to	be	mutated	as	timestamps
class	Contact

{

				protected	$dates	=	[

								'met_at'

];

}

By	default,	this	array	contains	created_at	and	updated_at,	so	adding	entries	to	dates	just
adds	them	to	the	list.

However,	there’s	no	difference	between	adding	columns	to	this	list	and	adding	them	to	$this-
>casts	as	timestamp,	so	this	is	becoming	a	bit	of	an	unnecessary	feature	now	that	attribute
casting	can	cast	timestamps	(new	in	Laravel	5.2).

Eloquent	Collections
When	you	make	any	query	call	in	Eloquent	that	has	the	potential	to	return	multiple	rows,
instead	of	an	array	they’ll	come	packaged	in	an	Eloquent	collection,	which	is	a	specialized
type	of	collection.	Let’s	take	a	look	at	collections	and	Eloquent	collections,	and	what	makes
them	better	than	plain	arrays.

Introducing	the	base	collection
Laravel’s	Collection	objects	(Illuminate\Support\Collection)	are	a	little	bit	like	arrays	on
steroids.	The	methods	they	expose	on	array-like	objects	are	so	helpful	that,	once	you’ve	been
using	them	for	a	while,	you’ll	likely	want	to	pull	Illuminate	into	even	non-Laravel	projects
just	for	collections	—	which	you	can,	with	the	Tightenco/Collect	package.

You	can	create	a	collection	by	passing	an	array	into	its	constructor,	or	by	creating	an	empty
collection	and	pushing	entries	onto	it.	Laravel	also	has	a	collect()	helper,	which	is	the
simplest	way	to	create	a	collection.	Let’s	try	it:

$collection	=	collect([1,	2,	3]);

Now	let’s	say	we	want	to	filter	out	any	even	numbers:

$odds	=	$collection->reject(function	($item)	{

				return	$item	%	2	===	0;

});

Or	what	if	we	want	to	get	a	version	of	the	array	where	each	item	is	multiplied	by	10?	We	can
do	that	as	follows:

$multiplied	=	$collection->map(function	($item)	{

				return	$item	*	10;

});

We	can	even	get	only	the	evens,	multiply	them	all	by	10,	and	reduce	them	to	a	single	number
by	sum:

$sum	=	$collection

				->filter(function	($item)	{

								return	$item	%	2	==	0;

				})->map(function	($item)	{

								return	$item	*	10;

				})->sum();

As	you	can	see,	collections	provide	a	series	of	methods,	which	can	optionally	be	chained,	to
perform	functional	operations	on	your	arrays.	They	provide	the	same	functionality	as	native
PHP	methods	like	array_map()	and	array_reduce(),	but	you	don’t	have	to	memorize	PHP’s
unpredictable	parameter	order,	and	the	method	chaining	syntax	is	endlessly	more	readable.

There	are	more	than	60	methods	available	on	the	Collection	class,	including	methods	like

https://github.com/tightenco/collect

max()	and	whereIn(),	flatten(),	and	flip(),	and	there’s	not	enough	space	to	cover	them	all
here.	We’ll	cover	more	in	“Collections”,	or	you	can	check	out	the	Laravel	docs	on
Collections	to	see	all	of	the	methods.

https://laravel.com/docs/master/collections

COLLECTIONS	IN	THE	PLACE	OF	ARRAYS
Collections	can	also	be	used	in	any	context	(except	typehinting)	where	you	can	use	arrays;	they	allow	for
iteration,	so	you	can	pass	them	to	foreach,	and	they	allow	for	array	access,	so	if	they’re	keyed	you	can	try	$a	=
$collection['a'].

What	Eloquent	collections	add
Each	Eloquent	collection	is	a	normal	collection,	but	extended	for	the	particular	needs	of	a
collection	of	Eloquent	results.

Once	again,	there’s	not	enough	room	here	to	cover	all	of	the	additions,	but	they’re	centered
around	the	unique	aspects	of	interacting	with	a	collection	not	just	of	generic	objects,	but
objects	meant	to	represent	database	rows.

For	example,	every	Eloquent	collection	has	a	method	called	modelKeys()	that	returns	an	array
of	the	primary	keys	of	every	instance	in	the	collection.	find($id)	looks	for	an	instance	that
has	the	primary	key	of	$id.

One	additional	feature	available	here	is	the	ability	to	define	that	any	given	model	should
return	its	results	wrapped	in	a	specific	class	of	collection.	So,	if	you	want	to	add	specific
methods	to	any	collection	of	objects	of	the	Order	class	—	possibly	related	to	summarizing	the
financial	details	of	your	orders	—	you	could	create	a	custom	OrderCollection	that	extends
the	Illuminate\Database\Eloquent\Collection	class,	and	then	register	it	in	your	model,	as
shown	in	Example	8-31.

Example	8-31.	Custom	Collection	classes	for	Eloquent	models
...

class	OrderCollection	extends	Collection

{

				public	function	sumBillableAmount()

				{

								return	$this->reduce(function	($carry,	$order)	{

												return	$carry	+	($order->billable	?	$order->amount	:	0);

								},	0);

				}

}

...

class	Order	extends	Model

{

				public	function	newCollection(array	$models	=	[])

				{

								return	new	OrderCollection($models);

				}

Now,	any	time	you	get	back	a	collection	of	Orders	(e.g.,	from	Order::all())	it’ll	actually	be
an	instance	of	the	OrderCollection	class:

$orders	=	Order::all();

$billableAmount	=	$orders->sumBillableAmount();

Eloquent	Serialization
Serialization	is	what	happens	when	you	take	something	complex	—	an	array,	or	an	object	—
and	convert	it	to	a	string.	In	a	web-based	context,	that	string	is	often	JSON,	but	it	could	take
other	forms	as	well.

Serializing	complex	database	records	can	be,	well,	complex,	and	this	is	one	of	the	places
many	ORMs	fall	short.	Thankfully,	you	get	two	powerful	methods	for	free	with	Eloquent:
toArray()	and	toJson().	Collections	also	have	toArray()	and	toJson(),	so	all	of	these	are
valid:

$contactArray	=	Contact::first()->toArray();

$contactJson	=	Contact::first()->toJson();

$contactsArray	=	Contact::all()->toArray();

$contactsJson	=	Contact::all()->toJson();

You	can	also	cast	an	Eloquent	instance	or	collection	to	a	string	($string	=	(string)
$contact;),	but	both	models	and	collections	will	just	run	toJson()	and	return	the	result.

Returning	models	directly	from	route	methods
Laravel’s	router	eventually	converts	everything	routes	return	to	a	string,	so	there’s	a	clever
trick	you	can	use.	If	you	return	the	result	of	an	Eloquent	call	in	a	controller,	it	will	be
automatically	cast	to	a	string,	and	therefore	returned	as	JSON.	That	means	a	JSON-returning
route	can	be	as	simple	as	either	of	the	ones	in	Example	8-32.

Example	8-32.	Returning	JSON	from	routes	directly
//	routes/web.php

Route::get('api/contacts',	function	()	{

				return	Contact::all();

});

Route::get('api/contacts/{id}',	function	($id)	{

				return	Contact::findOrFail($id);

});

Hiding	attributes	from	JSON
It’s	very	common	to	use	JSON	returns	in	APIs,	and	it’s	very	common	to	want	to	hide	certain
attributes	in	these	contexts,	so	Eloquent	makes	it	easy	to	hide	any	attributes	every	time	you
cast	to	JSON.

You	can	either	blacklist	attributes,	hiding	the	ones	you	list:

class	Contact	extends	Model

{

				public	$hidden	=	['password',	'remember_token'];

or	whitelist	attributes,	showing	only	the	ones	you	list:

class	Contact	extends	Model

{

				public	$visible	=	['name',	'email',	'status'];

This	also	works	for	relationships:

class	User	extends	Model

{

				public	$hidden	=	['contacts'];

				public	function	contacts()

				{

								return	$this->hasMany(Contact::class);

				}

LOADING	THE	CONTENTS	OF	A	RELATIONSHIP
By	default,	the	contents	of	a	relationship	are	not	loaded	when	you	get	a	database	record,	so	it	doesn’t	matter
whether	you	hide	them	or	not.	But,	as	we’ll	learn	shortly,	it’s	possible	to	get	a	record	with	its	related	items,	and	in
this	context,	those	items	will	not	be	included	in	a	serialized	copy	of	that	record	if	you	choose	to	hide	that
relationship.

In	case	you’re	curious	now,	you	can	get	a	User	with	all	contacts	—	assuming	you’ve	set	up	the	relationship
correctly	—	with	the	following	call:

$user	=	User::with('contacts')->first();

There	might	be	times	when	you	want	to	make	an	attribute	visible	just	for	a	single	call.	That’s
possible,	with	the	Eloquent	method	makeVisible():

$array	=	$user->makeVisible('remember_token')->toArray();

ADDING	A	GENERATED	COLUMN	TO	ARRAY	AND	JSON	OUTPUT
If	you	have	created	an	accessor	for	a	column	that	doesn’t	exist	—	for	example,	our	full_name	column	from
Example	8-26	—	add	it	to	the	$appends	array	on	the	model	to	add	it	to	the	array	and	JSON	output:

class	Contact	extends	Model

{

				protected	$appends	=	['full_name'];

				public	function	getFullNameAttribute()

				{

								return	"{$this->first_name}	{$this->last_name}";

Eloquent	Relationships
In	a	relational	database	model,	it’s	expected	that	you	will	have	tables	that	are	related	to	each
other	—	hence	the	name.	Eloquent	provides	simple	and	powerful	tools	to	make	the	process	of
relating	your	database	tables	easier	than	ever	before.

Many	of	our	examples	in	this	chapter	have	been	centered	around	a	user	who	has	many
contacts,	a	relatively	common	situation.

In	an	ORM	like	Eloquent,	you	would	call	this	a	one-to-many	relationship:	the	one	user	has
many	contacts.

If	it	was	a	CRM	where	a	contact	could	be	assigned	to	many	users,	then	this	would	be	a	many-
to-many	relationship:	many	users	can	be	related	to	one	contact,	and	each	user	can	be	related	to
many	contacts.	A	user	has	and	belongs	to	many	contacts.

If	each	contact	can	have	many	phone	numbers,	and	a	user	wanted	a	database	of	every	phone
number	for	their	CRM,	you	would	say	the	user	has	many	phone	numbers	through	contacts	—
that	is,	a	user	has	many	contacts,	and	the	contact	has	many	phone	numbers,	so	the	contact	is
sort	of	an	intermediary.

And	what	if	each	contact	has	an	address,	but	you’re	only	interested	in	tracking	one	address?
You	could	have	all	the	address	fields	on	the	Contact,	but	you	might	also	create	an	Address
model	—	meaning	the	contact	has	one	address.

Finally,	what	if	you	want	to	be	able	to	star	(favorite)	contacts,	but	also	events?	This	would	be	a
polymorphic	relationship,	where	a	user	has	many	stars,	but	some	may	be	contacts	and	some
may	be	events.

So,	let’s	dig	into	how	to	define	and	access	these	relationships.

One	to	one
Let’s	start	simple:	a	Contact	has	one	PhoneNumber.	This	relationship	is	defined	in	Example	8-
33.

Example	8-33.	Defining	a	one-to-one	relationship
class	Contact	extends	Model

{

				public	function	phoneNumber()

				{

								return	$this->hasOne(PhoneNumber::class);

				}

As	you	can	tell,	the	methods	defining	relationships	are	on	the	Eloquent	model	itself	($this-
>hasOne())	and	take,	at	least	in	this	instance,	the	fully	qualified	class	name	of	the	class	that
you’re	relating	them	to.

How	should	this	be	defined	in	your	database?	Since	we’ve	defined	that	the	Contact	has	one
PhoneNumber,	Eloquent	expects	that	the	table	supporting	the	PhoneNumber	class	(likely

phone_numbers)	has	a	contact_id	column	on	it.	If	you	named	it	something	different	(for
instance,	owner_id),	you’ll	need	to	change	your	definition:

return	$this->hasOne(PhoneNumber::class,	'owner_id');

Here’s	how	we	access	the	phone	number	on	a	contact:

$contact	=	Contact::first();

$contactPhone	=	$contact->phoneNumber;

Notice	that	we	define	the	method	in	Example	8-33	with	phoneNumber(),	but	we	access	it	with	-
>phoneNumber.	That’s	the	magic.	You	could	also	access	it	with	->phone_number.	This	will
return	a	full	Eloquent	instance	of	the	related	PhoneNumber	record.

But	what	if	we	want	to	access	the	Contact	from	the	PhoneNumber?	There’s	a	method	for	that,
too	(see	Example	8-34).

Example	8-34.	Defining	a	one-to-one	relationship’s	inverse
class	PhoneNumber	extends	Model

{

				public	function	contact()

				{

								return	$this->belongsTo(Contact::class);

				}

Then	we	access	it	the	same	way:

$contact	=	$phoneNumber->contact;

INSERTING	RELATED	ITEMS
Each	relationship	type	has	its	own	quirks	for	how	to	relate	models,	but	here’s	the	core	of	how	it	works:	pass	an
instance	to	save(),	or	an	array	of	instances	to	saveMany().	You	can	also	pass	properties	to	create()	and	it’ll
make	a	new	instance	for	you:

$contact	=	Contact::first();

$phoneNumber	=	new	PhoneNumber;

$phoneNumber->number	=	8008675309;

$contact->phoneNumbers()->save($phoneNumber);

//	or

$contact->phoneNumbers()->saveMany([

				PhoneNumber::find(1),

				PhoneNumber::find(2),

]);

//	or

$contact->phoneNumbers()->create([

				'number'	=>	'+13138675309'

]);

One	to	many
The	one-to-many	relationship	is	by	far	the	most	common.	Let’s	take	a	look	at	how	to	define
that	our	User	has	many	Contacts	(Example	8-35).

Example	8-35.	Defining	a	one-to-many	relationship
class	User	extends	Model

{

				public	function	contacts()

				{

								return	$this->hasMany(Contact::class);

				}

Once	again,	this	expects	that	the	Contact	model’s	backing	table	(likely	contacts)	has	a
user_id	column	on	it.	If	it	doesn’t,	override	it	by	passing	the	correct	column	name	as	the
second	parameter	of	hasMany().

We	can	get	a	user ’s	contacts	as	follows:

$user	=	User::first();

$usersContacts	=	$user->contacts;

Just	like	with	one	to	one,	we	use	the	name	of	the	relationship	method	and	call	it	as	if	it	were	a
property	instead	of	a	method.	However,	this	method	returns	a	collection	instead	of	a	model
instance.	And	this	is	a	normal	Eloquent	collection,	so	you	can	have	all	sorts	of	fun	with	it:

$donors	=	$user->contacts->filter(function	($contact)	{

				return	$contact->status	==	'donor';

});

$lifetimeValue	=	$contact->orders->reduce(function	($carry,	$order)	{

				return	$carry	+	$order->amount;

},	0);

Just	like	with	one	to	one,	we	can	also	define	the	inverse	(Example	8-36).

Example	8-36.	Defining	a	one-to-many	relationship’s	inverse
class	Contact	extends	Model

{

				public	function	user()

				{

								return	$this->belongsTo(User::class);

				}

And	just	like	one	to	one,	we	can	access	the	User	from	the	Contact:

$userName	=	$contact->user->name;

ATTACHING	AND	DETACHING	RELATED	ITEMS	FROM	THE
ATTACHED	ITEM

Most	of	the	time	we	attach	related	items	by	running	save()	on	the	parent	and	passing	in	the	related	item,	as	in
$user->contacts()->save($contact).	But	if	you	want	to	perform	the	behaviors	on	the	attached	(“child”)	item,
you	can	use	associate()	and	dissociate()	on	the	method	that	returns	the	belongsTo():

$contact	=	Contact::first();

$contact->user()->associate(User::first());

$contact->save();

//	and	later

$contact->user()->dissociate();

$contact->save();

Using	relationships	as	query	builders
Until	now,	we’ve	taken	the	method	name	(e.g.,	contacts())	and	called	it	as	if	were	a	property
(e.g.,	$user->contacts).	What	happens	if	we	call	it	as	a	method?	Instead	of	processing	the
relationship,	it	will	return	a	prescoped	query	builder.

So	if	you	have	User	1,	and	you	call	its	contacts()	method,	you	will	now	have	a	query	builder
prescoped	to	“all	contacts	that	have	a	field	user_id	with	the	value	of	1.”	You	can	then	build
out	a	functional	query	from	there:

$donors	=	$user->contacts()->where('status',	'donor')->get();

Selecting	only	records	that	have	a	related	item
You	can	also	choose	to	select	only	records	that	meet	particular	criteria	with	regard	to	their
related	items	using	has():

$postsWithComments	=	Post::has('comments')->get();

You	can	also	adjust	the	criteria	further:

$postsWithManyComments	=	Post::has('comments',	'>=',	5)->get();

You	can	nest	the	criteria:

$usersWithPhoneBooks	=	User::has('contacts.phoneNumbers')->get();

And	finally,	you	can	write	custom	queries	on	the	related	items:

//	Gets	all	contacts	with	a	phone	number	containing	the	string	"867-5309"

$jennyIGotYourNumber	=	Contact::whereHas('phoneNumbers',	function	($query)	{

				$query->where('number',	'like',	'%867-5309%');

});

Has	many	through
“Has	many	through”	is	really	a	convenience	method	for	pulling	in	relationships	of	a
relationship.	This	is	the	example	I	gave	earlier	where	a	User	has	many	Contacts	and	each
Contact	has	many	PhoneNumbers.	What	if	you	want	to	get	a	user ’s	list	of	contact	phone
numbers?	That’s	has	many	through.

This	structure	assumes	that	your	contacts	table	has	a	user_id	to	relate	the	contacts	to	the
users,	and	the	phone_numbers	table	has	a	contact_id	to	relate	it	to	the	contacts.	Then,	we
define	the	relationship	on	the	User	as	in	Example	8-37.

Example	8-37.	Defining	a	has-many-through	relationship
class	User	extends	Model

{

				public	function	phoneNumbers()

				{

								return	$this->hasManyThrough(PhoneNumber::class,	Contact::class);

				}

You’d	access	this	relationship	using	$user->phone_numbers,	and	as	always	you	can	customize
the	relationship	key	on	the	intermediate	model	(with	the	third	parameter	of
hasmanyThrough())	and	the	relationship	key	on	the	distant	model	(with	the	fourth	parameter).

Many	to	many
This	is	where	things	start	to	get	complex.	Let’s	take	our	example	of	a	CRM	that	allows	a	User
to	have	many	Contacts,	and	each	Contact	to	be	related	to	multiple	users.

First,	we	define	the	relationship	on	the	User	as	in	Example	8-38.

Example	8-38.	Defining	a	many-to-many	relationship
class	User	extends	Model

{

				public	function	contacts()

				{

								return	$this->belongsToMany(Contact::class);

				}

}

And	since	this	is	many	to	many,	the	inverse	looks	exactly	the	same	(Example	8-39).

Example	8-39.	Defining	a	many-to-many	relationship’s	inverse
class	Contact	extends	Model

{

				public	function	users()

				{

								return	$this->belongsToMany(User::class);

				}

}

Since	a	single	Contact	can’t	have	a	user_id	column	and	a	single	User	can’t	have	a	contact_id
column,	many-to-many	relationships	rely	on	a	pivot	table	that	connects	the	two.	The

conventional	naming	of	this	table	is	done	by	placing	the	two	singular	table	names	together,
ordered	alphabetically,	and	separating	them	by	an	underscore.

So,	since	we’re	linking	users	and	contacts,	our	pivot	table	should	be	named	contacts_users
(if	you’d	like	to	customize	the	table	name,	pass	it	as	the	second	parameter	to	the
belongsToMany()	methods).	It	needs	two	columns:	contact_id	and	user_id.

Just	like	with	hasMany(),	we	get	access	to	a	collection	of	the	related	items,	but	this	time	it’s
from	both	sides	(Example	8-40).

Example	8-40.	Accessing	the	related	items	from	both	sides	of	a	many-to-many	relationship
$user	=	User::first();

$user->contacts->each(function	($contact)	{

				//	do	something

});

$contact	=	Contact::first();

$contact->users->each(function	($user)	{

				//	do	something

});

$donors	=	$user->contacts()->where('status',	'donor')->get();

UNIQUE	ASPECTS	OF	ATTACHING	AND	DETACHING	
MANY-TO-MANY	RELATED	ITEMS

Since	your	pivot	table	can	have	its	own	properties,	you	need	to	be	able	to	set	those	properties	when	you’re	attaching	a
many-to-many	related	item.	You	can	do	that	by	passing	an	array	as	the	second	parameter	to	save():

$user	=	User::first();

$contact	=	Contact::first();

$user->contacts()->save($contact,	['status'	=>	'donor']);

Additionally,	you	can	use	attach()	and	detach()	and,	instead	of	passing	in	an	instance	of	a	related	item,	you	can	just
pass	an	ID.	They	work	just	the	same	as	save(),	but	can	also	accept	an	array	of	IDs	without	you	needing	to	rename	the
method	to	something	like	attachMany():

$user	=	User::first();

$user->contacts()->attach(1);

$user->contacts()->attach(2,	['status'	=>	'donor']);

$user->contacts()->attach([1,	2,	3]);

$user->contacts()->attach([

				1	=>	['status'	=>	'donor'],

				2,

				3

]);

$user->contacts()->detach(1);

$user->contacts()->detach([1,	2]);

$user->contacts()->detach();	//	Detaches	all	contacts

You	can	also	use	updateExistingPivot()	to	make	changes	just	to	the	pivot	record:

$user->contacts()->updateExistingPivot($contactId,	[

				'status'	=>	'inactive'

]);

And	if	you’d	like	to	replace	the	current	relationships,	effectively	detaching	all	previous	relationships	and	attaching	new
ones,	you	can	pass	an	array	to	sync():

$user->contacts()->sync([1,	2,	3]);

$user->contacts()->sync([

				1	=>	['status'	=>	'donor'],

				2,

				3

]);

Getting	data	from	the	pivot	table
One	thing	that’s	unique	about	many	to	many	is	that	it’s	our	first	relationship	that	has	a	pivot
table.	The	less	data	you	have	on	a	pivot	table,	the	better,	but	there	are	some	cases	where	it’s
valuable	to	store	information	on	your	pivot	table	—	for	example,	you	might	want	to	store	a
created_at	field	to	see	when	this	relationship	was	created.

In	order	to	store	these	fields,	you	have	to	add	them	to	the	relationship	definition,	like	in
Example	8-41.	You	can	define	specific	fields	using	withPivot()	or	add	created_at	and
updated_at	timestamps	using	withTimestamps().

Example	8-41.	Adding	fields	to	a	pivot	record
public	function	contacts()

{

				return	$this->belongsToMany(Contact::class)

								->withTimestamps()

								->withPivot('status',	'preferred_greeting');

}

When	you	get	a	model	instance	through	a	relationship,	it	will	have	a	pivot	property	on	it,
which	will	represent	its	place	in	the	pivot	table	you	just	pulled	it	from.	So,	you	can	do
something	like	Example	8-42.

Example	8-42.	Getting	data	from	a	related	item’s	pivot	entry
$user	=	User::first();

$user->contacts->each(function	($contact)	{

				echo	sprintf(

								'Contact	associated	with	this	user	at:	%s',

								$contact->pivot->created_at

);

});

Polymorphic
Remember,	our	polymorphic	relationship	is	where	we	have	multiple	Eloquent	classes
corresponding	to	the	same	relationship.	We’re	going	to	use	Stars	(like	favorites)	right	now.	A
user	can	star	both	Contacts	and	Events,	and	that’s	where	the	name	polymorphic	comes	from:
a	single	interface	to	objects	of	multiple	types.

So,	we’ll	need	three	tables,	and	three	models:	Star,	Contact,	and	Event	(and,	of	course,	User,
but	we’ll	get	there	in	a	second).	The	contacts	and	events	tables	will	just	be	as	they	normally
are,	and	the	stars	table	will	contain	an	id	field,	a	starrable_id,	and	a	starrable_type.	For
each	Star,	you’ll	be	defining	which	“type”	(e.g.,	Contact	or	Event)	and	which	ID	of	that	type
(e.g.,	1)	it	is.

Let’s	create	our	models,	as	seen	in	Example	8-43.

Example	8-43.	Creating	the	models	for	a	polymorphic	starring	system
class	Star	extends	Model

{

				public	function	starrable()

				{

								return	$this->morphsTo();

				}

}

class	Contact	extends	Model

{

				public	function	stars()

				{

								return	$this->morphMany(Star::class,	'starrable');

				}

}

class	Event	extends	Model

{

				public	function	stars()

				{

								return	$this->morphMany(Star::class,	'starrable');

				}

}

So,	how	do	we	create	a	Star?

$contact	=	Contact::first();

$contact->stars()->create();

It’s	that	easy.	The	Contact	is	now	starred.

In	order	to	find	all	of	the	Stars	on	a	given	Contact,	we	call	the	stars()	method	like	in
Example	8-44.

Example	8-44.	Retrieving	the	instances	of	a	polymorphic	relationship
$contact	=	Contact::first();

$contact->stars->each(function	($star)	{

				//	Do	stuff

});

If	we	have	an	instance	of	Star,	we	can	get	its	target	by	calling	the	method	we	used	to	define	its
morphTo(),	which	in	this	context	is	starrable().	Take	a	look	at	Example	8-45.

Example	8-45.	Retrieving	the	target	of	polymorphic	instance
$stars	=	Star::all();

$stars->each(function	($star)	{

				var_dump($star->starrable);	//	An	instance	of	Contact	or	Event

});

Finally,	you	might	be	wondering,	“What	if	I	care	who	starred	this	contact?”	That’s	a	great
question;	of	course	you	do.	It’s	as	simple	as	adding	user_id	to	your	stars	table,	and	then
setting	up	that	a	User	has	many	Stars	and	a	Star	belongs	to_	one	User	—	a	one-to-many
relationship	(Example	8-46).	The	stars	table	becomes	almost	a	pivot	table	between	your	User
and	your	Contacts	and	Events.

Example	8-46.	Extending	a	polymorphic	system	to	differentiate	by	user
class	Star	extends	Model

{

				public	function	starrable()

				{

								return	$this->morphsTo;

				}

				public	function	user()

				{

								return	$this->belongsTo(User::class);

				}

}

class	User	extends	Model

{

				public	function	stars()

				{

								return	$this->hasMany(Star::class);

				}

}

That’s	it!	You	can	now	run	$star->user	or	$user->stars	to	find	a	list	of	a	User’s	Stars	or	to
find	the	starring	User	from	a	Star.	Also,	when	you	create	a	new	Star,	you’ll	now	want	to	pass
the	User:

$user	=	User::first();

$event	=	Event::first();

$event->stars()->create(['user_id'	=>	$user->id]);

Many	to	many	polymorphic
The	most	complex	and	least	common	of	the	relationship	types,	many-to-many	polymorphic
relationships	are	like	polymorphic	relationships,	except	instead	of	being	one	to	many	they’re
many	to	many.

The	most	common	example	for	this	relationship	type	is	the	tag,	so	I’ll	keep	it	safe	and	use	that
as	our	example.	Let’s	imagine	you	want	to	be	able	to	tag	Contacts	and	Events.	The	uniqueness
of	many-to-many	polymorphism	is	that	it’s	many	to	many:	each	tag	may	be	applied	to
multiple	items,	and	each	tagged	item	might	have	multiple	tags.	And	to	add	to	that,	it’s
polymorphic:	tags	can	be	related	to	items	of	several	different	types.	For	the	database,	we’ll
start	with	the	normal	structure	of	the	polymorphic	relationship	but	also	add	a	pivot	table.

This	means	we’ll	need	a	contacts	table,	an	events	table,	and	a	tags	table,	all	shaped	like
normal	with	an	ID	and	whatever	properties	you	want,	and	a	new	taggables	table,	which	will
have	a	tag_id,	a	taggable_id,	and	a	taggable_type.	Each	entry	into	the	taggables	table	will
relate	a	tag	with	one	of	the	taggable	content	types.

Now	let’s	define	this	relationship	on	our	models,	as	seen	in	Example	8-47.

Example	8-47.	Defining	a	polymorphic	many-to-many	relationship
class	Contact	extends	Model

{

				public	function	tags()

				{

								return	$this->morphToMany(Tag::class,	'taggable');

				}

}

class	Event	extends	Model

{

				public	function	tags()

				{

								return	$this->morphToMany(Tag::class,	'taggable');

				}

}

class	Tag	extends	Model

{

				public	function	contacts()

				{

								return	$this->morphedByMany(Contact::class,	'taggable');

				}

				public	function	events()

				{

								return	$this->morphedByMany(Event::class,	'taggable');

				}

}

Here’s	how	to	create	your	first	tag:

$tag	=	Tag::firstOrCreate(['name'	=>	'likes-cheese']);

$contact	=	Contact::first();

$contact->tags()->attach($tag->id);

We	get	the	results	of	this	relationship	like	normal,	as	seen	in	Example	8-48.

Example	8-48.	Accessing	the	related	items	from	both	sides	of	a	many-to-many	polymorphic
relationship
$contact	=	Contact::first();

$contact->tags->each(function	($tag)	{

				//	Do	stuff

});

$tag	=	Tag::first();

$tag->contacts->each(function	($contact)	{

				//	Do	stuff

});

Child	Records	Updating	Parent	Record	Timestamps
Remember,	any	Eloquent	models	by	default	will	have	created_at	and	updated_at	timestamps.
Eloquent	will	set	the	updated_at	timestamp	automatically	any	time	you	make	any	changes	to	a
record.

When	a	related	item	either	belongsTo()	or	belongsToMany()	another	item,	it	might	be
valuable	to	mark	the	other	item	as	updated	any	time	the	related	item	is	updated.	For	example,
if	a	PhoneNumber	is	updated,	the	Contact	it’s	connected	to	should	be	marked	as	having	been
updated	as	well.

We	can	accomplish	this	by	adding	the	method	name	for	that	relationship	to	a	$touches	array
property	on	the	child	class,	as	in	Example	8-49.

Example	8-49.	Updating	a	parent	record	any	time	the	child	record	is	updated
class	PhoneNumber	extends	Model

{

				protected	$touches	=	['contact'];

				public	function	contact()

				{

								return	$this->belongsTo(Contact::class);

				}

Eager	loading
By	default,	Eloquent	loads	relationships	using	“lazy	loading.”	This	means	when	you	first	load
a	model	instance,	its	related	models	will	not	be	loaded	along	with	it.	Rather,	they’ll	only	be
loaded	if	you	make	a	separate	call	to	pull	them	in;	they’re	“lazy”	and	don’t	do	any	work	until
called	upon.

This	can	become	a	problem	if	you’re	iterating	over	a	list	of	model	instances	and	each	has	a
related	item	(or	items)	that	you’re	working	on.	The	problem	with	lazy	loading	is	that	it	can
introduce	significant	database	load	(often	the	N+1	problem,	if	you’re	familiar	with	the	term;
if	not,	just	ignore	this	parenthetical	remark).	For	instance,	every	time	the	loop	in	Example	8-
50	runs,	it	executes	a	new	database	query	to	look	up	the	PhoneNumber	for	that	Contact.

Example	8-50.
$contacts	=	Contact::all();

foreach	($contacts	as	$contact)	{

				foreach	($contact->phone_numbers	as	$phone_number)	{

								echo	$phone_number->number;

				}

}

If	you	are	loading	a	model	instance	and	you	know	you’ll	be	working	with	its	relationships,
you	can	instead	choose	to	“eager-load”	one	or	many	of	its	sets	of	related	items:

$contacts	=	Contact::with('phoneNumbers')->get();

Using	the	with()	method	with	a	retrieval	gets	all	of	the	items	related	to	the	pulled	item(s),	and

as	you	can	see	in	this	example,	you	pass	it	the	name	of	the	method	the	relationship	is	defined
by.

When	we	use	eager	loading,	instead	of	pulling	the	related	items	one	at	a	time	when	they’re
requested	(selecting	one	phone	number	each	time	a	foreach	loop	runs),	we	have	a	single
query	to	pull	the	initial	items	(selecting	all	contacts)	and	a	second	query	to	pull	all	their
related	items	(selecting	all	phone	numbers	owned	by	the	contacts	we	just	pulled).

You	can	eager-load	multiple	relationships	by	passing	multiple	parameters	to	the	with()	call:

$contacts	=	Contact::with('phoneNumbers',	'addresses')->get();

And	you	can	nest	eager	loading	to	eager-load	the	relationships	of	relationships:

$authors	=	Author::with('posts.comments')->get();

Constraining	eager	loads
If	you	want	to	eager-load	a	relationship,	but	not	all	of	the	items,	you	can	pass	a	closure	to
with()	to	define	exactly	which	related	items	to	eager-load:

$contacts	=	Contact::with(['addresses'	=>	function	($query)	{

				$query->where('mailable',	true);

}])->get();

Lazy	eager	loading
I	know	it	sounds	crazy,	because	we	just	defined	eager	loading	as	sort	of	the	opposite	of	lazy
loading,	but	sometimes	you	don’t	know	you	want	to	perform	an	eager-load	query	until	after
the	initial	instances	have	been	pulled.	You	can	still	perform	an	eager	load	after	the	fact,	with
lazy	eager	loading:

$contacts	=	Contact::all();

if	($showPhoneNumbers)	{

				$contacts->load('phoneNumbers');

}

Eager	loading	only	the	count
If	you	want	to	eager-load	relationships	but	only	so	you	can	have	access	to	the	count	of	items
in	each	relationship,	you	can	try	withCount():

$authors	=	Author::withCount('posts')->get();

//	adds	a	"posts_count"	integer	to	each	Author	with	a	count	of	that

//	Author's	number	of	related	posts

Eloquent	Events
Eloquent	models	fire	events	out	into	the	void	of	your	application	every	time	certain	actions
happen,	regardless	of	whether	you’re	listening.	If	you’re	familiar	with	pub/sub,	it’s	this	same
model	(and	you	can	learn	more	about	Laravel’s	entire	event	system	in	Chapter	16).

Here’s	a	quick	rundown	of	binding	a	listener	to	when	a	new	Contact	is	created.	We’re	going
to	bind	it	in	the	boot()	method	of	AppServiceProvider,	and	let’s	imagine	we’re	notifying	a
third-party	service	every	time	we	create	a	new	Contact.

Example	8-51.	Binding	a	listener	to	an	Eloquent	event
class	AppServiceProvider	extends	ServiceProvider

{

				public	function	boot()

				{

								$thirdPartyService	=	new	SomeThirdPartyService;

								Contact::creating(function	($contact)	use	($thirdPartyService)	{

												try	{

																$thirdPartyService->addContact($contact);

												}	catch	(Exception	$e)	{

																Log::error('Failed	adding	contact	to	ThirdPartyService;	cancelled.');

																return	false;

												}

								});

				}

We	can	see	a	few	things	in	Example	8-51.	First,	we	use	Modelname::eventName()	as	the
method,	and	pass	it	a	closure.	The	closure	gets	access	to	the	model	instance	that	is	being
operated	on.	Second,	we’re	going	to	need	to	define	this	listener	in	a	service	provider
somewhere.	And	third,	if	we	return	false,	the	operation	will	cancel	and	the	save()	or
update()	will	be	cancelled.

Here	are	the	events	that	every	Eloquent	model	fires:
creating

created

updating

updated

saving

saved

deleting

deleted

restoring

restored

Most	of	these	should	be	pretty	clear,	except	possibly	restoring	and	restored,	which	fire
when	you’re	restoring	a	soft-deleted	row.	Also,	saving	is	fired	for	both	creating	and
updating	and	saved	is	fired	for	both	created	and	updated.

Testing
Laravel’s	entire	application	testing	framework	makes	it	easy	to	test	your	database	—	not	by
writing	unit	tests	against	Eloquent,	but	by	just	being	willing	to	test	your	entire	application.

Take	this	scenario.	You	want	to	test	to	ensure	that	a	particular	page	shows	one	contact	but	not
another.	Some	of	that	logic	has	to	do	with	the	interplay	between	the	URL	and	the	controller
and	the	database,	so	the	best	way	to	test	it	is	an	application	test.	You	might	be	thinking	about
mocking	Eloquent	calls	and	trying	to	avoid	the	system	hitting	the	database.	Don’t	do	it.	Try
Example	8-52	instead.

Example	8-52.	Testing	database	interactions	with	simple	application	tests
public	function	test_active_page_shows_active_and_not_inactive_contacts()

{

				$activeContact	=	factory(Contact::class,	'active')->create();

				$inactiveContact	=	factory(Contact::class,	'inactive')->create();

				$this->visit('active-contacts')

								->see($activeContact->name)

								->dontSee($inactiveContact->name);

}

As	you	can	see,	model	factories	and	Laravel’s	application	testing	features	are	great	for	testing
database	calls.

Alternatively,	you	can	look	for	that	record	directly	in	the	database,	as	in	Example	8-53.

Example	8-53.	Using	seeInDatabase()	to	check	for	certain	records	in	the	database
public	function	test_contact_creation_works()

{

				$this->post('contacts',	[

								'email'	=>	'jim@bo.com'

]);

				$this->seeInDatabase('contacts',	[

								'email'	=>	'jim@bo.com'

]);

}

Eloquent	and	Laravel’s	database	framework	are	tested	extensively.	You	don’t	need	to	test	them.
You	don’t	need	to	mock	them.	If	you	really	want	to	avoid	hitting	the	database,	you	can	use	a
repository	and	then	return	unsaved	instances	of	your	Eloquent	models.	But	the	most	important
message	is,	test	the	way	your	application	uses	your	database	logic.

If	you	have	custom	accessors,	mutators,	scopes,	or	whatever	else,	you	can	also	test	them
directly,	as	in	Example	8-54.

Example	8-54.	Testing	accessors,	mutators,	and	scopes
public	function	test_full_name_accessor_works()

{

				$contact	=	factory(Contact::class)->make([

								'first_name'	=>	'Alphonse',

								'last_name'	=>	'Cumberbund'

]);

				$this->assertEquals('Alphonse	Cumberbund',	$contact->fullName);

}

public	function	test_vip_scope_filters_out_non_vips()

{

				$vip	=	factory(Contact::class,	'vip')->create();

				$nonVip	=	factory(Contact::class)->create();

				$vips	=	Contact::vips()->get();

				$this->assertTrue($vips->contains(['id'	=>	$vip->id]));

				$this->assertFalse($vips->contains(['id'	=>	$nonVip->id]));

}

Just	avoid	writing	tests	that	leave	you	creating	complex	“Demeter	chains”	to	assert	that	a
particular	fluent	stack	was	called	on	some	database	mock.	If	your	testing	starts	to	get
overwhelming	and	complex	around	the	database	layer,	it’s	because	you’re	allowing
preconceived	notions	to	force	you	into	unnecessarily	complex	systems.	Keep	it	simple.

TL;DR
Laravel	comes	with	a	suite	of	powerful	database	tools,	including	migrations,	seeding,	an
elegant	query	builder,	and	Eloquent,	a	powerful	ActiveRecord	ORM.	Laravel’s	database	tools
don’t	require	you	to	use	Eloquent	at	all	—	you	can	access	and	manipulate	the	database	with	a
thin	layer	of	convenience	without	having	to	write	SQL	directly.	But	adding	an	ORM,	whether
it’s	Eloquent	or	Doctrine	or	whatever	else,	is	easy	and	can	work	neatly	with	Laravel’s	core
database	tools.

Eloquent	follows	the	Active	Record	pattern,	which	makes	it	simple	to	define	a	class	of
database-backed	objects,	including	which	table	they’re	stored	in,	the	shape	of	their	columns,
accessors	and	mutators,	and	much	more.	Eloquent	can	handle	every	sort	of	normal	SQL
action	and	also	complex	relationships,	up	to	and	including	polymorphic	many-to-many
relationships.

Laravel	also	has	a	robust	system	for	testing	databases,	including	model	factories.

Chapter	9.	User	Authentication	and
Authorization

Setting	up	a	basic	user	authentication	system	—	including	registration,	login,	sessions,
password	resets,	and	access	permissions	—	can	often	be	one	of	the	more	time-consuming
pieces	of	creating	the	foundation	of	an	application.	It’s	a	prime	candidate	for	extracting
functionality	out	to	a	library,	and	there	are	quite	a	few	such	libraries.

But	because	of	how	much	authentication	needs	vary	across	projects,	most	authentication
systems	grow	bulky	and	unusable	quickly.	Thankfully,	Laravel	has	found	a	way	to	make	an
authentication	system	that’s	easy	to	use	and	understand,	but	flexible	enough	to	fit	in	a	variety
of	settings.

Every	new	install	of	Laravel	has	a	create_users_table	migration	and	a	User	model	built	in
out	of	the	box.	Laravel	offers	an	Artisan	make:auth	command	that	seeds	a	collection	of
authentication-related	views	and	routes.	And	every	install	comes	with	a	RegisterController,
a	LoginController,	a	ForgotPasswordController,	and	a	ResetPasswordController.	The	APIs
are	clean	and	clear,	and	the	conventions	all	work	together	to	provide	a	simple	—	and
seamless	—	authentication	and	authorization	system.

DIFFERENCES	IN	AUTH	STRUCTURE	IN	LARAVEL	5.3
Note	that	in	Laravel	5.1	and	5.2,	most	of	this	functionality	lived	in	the	AuthController;	in	5.3,	this	functionality
has	been	split	out	into	multiple	controllers.	Many	of	the	specifics	we’ll	cover	here	about	how	to	customize
redirect	routes,	auth	guards,	and	such	are	different	in	5.1	and	5.2	(though	all	the	core	functionality	is	the	same).
So,	if	you’re	on	5.1	or	5.2	and	want	to	change	some	of	the	default	authentication	behaviors,	you’ll	likely	need	to
dig	a	bit	into	your	AuthController	to	see	how	exactly	you	should	customize	it.

The	User	Model	and	Migration
When	you	create	a	new	Laravel	application,	the	first	migration	and	model	you’ll	see	are	the
create_users_table	migration	and	the	App\User	model.	Example	9-1	shows,	straight	from
the	migration,	the	fields	you’ll	get	in	your	users	table.

Example	9-1.	Laravel’s	default	user	migration
Schema::create('users',	function	(Blueprint	$table)	{

				$table->increments('id');

				$table->string('name');

				$table->string('email')->unique();

				$table->string('password');

				$table->rememberToken();

				$table->timestamps();

});

We	have	an	autoincrementing	primary	key	ID,	a	name,	a	unique	email,	a	password,	a
“remember	me”	token,	and	created	and	modified	timestamps.	This	covers	everything	you
need	to	handle	basic	user	authentication	in	most	apps.

THE	DIFFERENCE	BETWEEN	AUTHENTICATION	AND
AUTHORIZATION

Authentication	means	verifying	who	someone	is,	and	allowing	them	to	act	as	that	person	in	your	system.	This
includes	the	login	and	logout	processes,	and	any	tools	that	allow	the	users	to	identify	themselves	during	their	time
using	the	application.

Authorization	means	determining	whether	the	authenticated	user	is	allowed	(authorized)	to	perform	a	specific
behavior.	For	example,	an	authorization	system	allows	us	to	forbid	any	nonadministrators	from	viewing	the	site’s
earnings.

The	User	model	is	a	bit	more	complex,	as	you	can	see	in	Example	9-2.	The	App\User	class
itself	is	simple,	but	it	extends	the	Illuminate\Foundation\Auth\User	class,	which	pulls	in
several	traits.

Example	9-2.	Laravel’s	default	User	model
<?php

//	App\User

namespace	App;

use	Illuminate\Notifications\Notifiable;

use	Illuminate\Foundation\Auth\User	as	Authenticatable;

class	User	extends	Authenticatable

{

				use	Notifiable;

				/**

					*	The	attributes	that	are	mass	assignable.

					*

					*	@var	array

					*/

				protected	$fillable	=	[

								'name',	'email',	'password',

];

				/**

					*	The	attributes	excluded	from	the	model's	JSON	form.

					*

					*	@var	array

					*/

				protected	$hidden	=	[

								'password',	'remember_token',

];

}

<?php

//	Illuminate\Foundation\Auth\User

namespace	Illuminate\Foundation\Auth;

use	Illuminate\Auth\Authenticatable;

use	Illuminate\Database\Eloquent\Model;

use	Illuminate\Auth\Passwords\CanResetPassword;

use	Illuminate\Foundation\Auth\Access\Authorizable;

use	Illuminate\Contracts\Auth\Authenticatable	as	AuthenticatableContract;

use	Illuminate\Contracts\Auth\Access\Authorizable	as	AuthorizableContract;

use	Illuminate\Contracts\Auth\CanResetPassword	as	CanResetPasswordContract;

class	User	extends	Model	implements

				AuthenticatableContract,

				AuthorizableContract,

				CanResetPasswordContract

{

				use	Authenticatable,	Authorizable,	CanResetPassword;

}

ELOQUENT	MODEL	REFRESHER
If	this	is	entirely	unfamiliar,	consider	reading	Chapter	8	before	continuing	to	learn	how	Eloquent	models	work.

So,	what	can	we	learn	from	this	model?	First,	users	live	in	the	users	table;	Laravel	will	infer
this	from	the	class	name.	We	are	able	to	fill	out	the	name,	email,	and	password	properties	when
creating	a	new	user,	and	the	password	and	remember_token	properties	are	excluded	when
outputting	the	user	as	JSON.	Looking	good	so	far.

We	also	can	see	from	the	contracts	and	the	traits	in	the	Illuminate\Foundation\Auth	verison
of	User	that	there	are	some	features	in	the	framework	(the	ability	to	authenticate,	to	authorize,
and	to	reset	passwords)	that	theoretically	could	be	applied	to	other	models,	not	just	the	User
model,	and	that	could	be	applied	individually	or	together.

CONTRACTS	AND	INTERFACES

You	may	have	noticed	that	sometimes	I	write	the	word	“contract”	and	sometimes	“interface,”	and	that	almost	all	of	the
interfaces	in	Laravel	are	under	the	Contracts	namespace.

A	PHP	interface	is	essentially	an	agreement	between	two	classes	that	one	of	the	classes	will	“behave”	a	certain	way.	It’s
a	bit	like	a	contract	between	them,	and	thinking	about	it	as	a	contract	gives	a	bit	more	inherent	meaning	to	the	name	than
calling	it	an	interface	does.

In	the	end,	though,	they’re	the	same	thing:	an	agreement	that	a	class	will	provide	certain	methods	with	a	certain	signature.

On	a	related	note,	the	Illuminate\Contracts	namespace	contains	a	group	of	interfaces	that	Laravel	components
implement	and	typehint.	This	makes	it	easy	to	develop	similar	components	that	implement	the	same	interfaces	and	swap
them	into	your	application	in	place	of	the	stock	Illuminate	components.	When	the	Laravel	core	and	components	typehint
a	mailer,	for	example,	they	don’t	typehint	the	Mailer	class.	Instead,	they	typehint	the	Mailer	contract	(interface),	making
it	easy	to	provide	your	own	mailer.	To	learn	more	about	how	to	do	this,	take	a	look	at	Chapter	11.

The	Authenticatable	contract	requires	methods	(getAuthIdentifier(),	etc.)	that	allow	the
framework	to	authenticate	instances	of	this	model	to	the	auth	system;	the	Authenticatable
trait	includes	the	methods	necessary	to	satisfy	that	contract	with	an	average	Eloquent	model.

The	Authorizable	contract	requires	methods	(can(),	cannot())	that	allow	the	framework	to
authorize	instances	of	this	model	for	their	access	permissions	in	different	contexts.
Unsurprisingly,	the	Authorizable	trait	provides	methods	that	will	satisfy	the	Authorizable
contract	for	an	average	Eloquent	model.

And	finally,	the	CanResetPassword	contract	requires	one	method
(getEmailForPasswordReset())	that	allows	the	framework	to,	you	guessed	it,	reset	the
password	of	any	entity	that	satisfies	this	contract.	The	trait	provides	that	method	for	an
average	Eloquent	model.

At	this	point,	we	have	the	ability	to	easily	represent	an	individual	user	in	the	database	(with	the
migration),	and	to	pull	them	out	with	a	model	instance	that	can	be	authenticated	(logged	in	and

out),	authorized	(checked	for	access	permissions	to	a	particular	resource),	and	sent	a
password	reset	email.

Using	the	auth()	Global	Helper	and	the	Auth	Facade
The	auth()	global	helper	is	the	easiest	way	to	interact	with	the	status	of	the	authenticated	user
throughout	your	app.	You	can	also	inject	an	instance	of	Illuminate\Auth\AuthManager	and
get	the	same	functionality,	or	use	the	Auth	facade.

The	most	common	usages	are	to	check	whether	a	user	is	logged	in	(auth()->check()	returns
true	if	the	current	user	is	logged	in;	auth()->guest()	returns	true	if	the	user	is	not	logged
in)	and	to	get	the	currently	logged-in	user	(use	auth()->user(),	or	auth()->id()	for	just	the
ID;	both	return	null	if	no	user	is	logged	in).

Take	a	look	at	Example	9-3	for	a	sample	usage	of	the	global	helper	in	a	controller.

Example	9-3.	Sample	usage	of	the	auth()	global	helper	in	a	controller
public	function	dashboard()

{

				if	(auth()->guest())	{

								return	redirect('sign-up');

				}

				return	view('dashboard')

								->with('user',	auth()->user());

}

The	Auth	Controllers
So,	how	do	we	actually	log	users	in?	And	how	do	we	trigger	those	password	resets?

It	all	happens	in	the	Auth-namespaced	controllers:	RegisterController,	LoginController,
ResetPasswordController,	and	ForgotPasswordController.

RegisterController
The	RegisterController,	in	combination	with	the	RegistersUsers	trait,	contains	sensible
defaults	for	how	to	show	new	users	a	registration	form,	how	to	validate	their	input,	how	to
create	new	users	once	their	input	is	validated,	and	where	to	redirect	them	afterward.

The	controller	itself	just	contains	a	few	hooks	that	the	traits	will	call	at	given	points.	That
makes	it	easy	to	customize	a	few	common	behaviors	without	having	to	dig	deeply	into	the
code	that	makes	it	all	work.

The	$redirectTo	property	defines	where	users	will	be	redirected	after	registration.	The
validator()	method	defines	how	to	validate	registrations.	And	the	create()	method	defines
how	to	create	a	new	user	based	on	an	incoming	registration.	Take	a	look	at	Example	9-4	to
see	the	default	RegisterController.

Example	9-4.	Laravel’s	default	RegisterController
...

class	RegisterController	extends	Controller

{

				use	RegistersUsers;

				protected	$redirectTo	=	'/home';

				...

				protected	function	validator(array	$data)

				{

								return	Validator::make($data,	[

												'name'	=>	'required|max:255',

												'email'	=>	'required|email|max:255|unique:users',

												'password'	=>	'required|min:6|confirmed',

]);

				}

				protected	function	create(array	$data)

				{

								return	User::create([

												'name'	=>	$data['name'],

												'email'	=>	$data['email'],

												'password'	=>	bcrypt($data['password']),

]);

				}

}

RegistersUsers	trait
The	RegistersUsers	trait,	which	the	RegisterController	imports,	handles	a	few	primary
functions	for	the	registration	process.	First,	it	shows	users	the	registration	form	view,	with	the
showRegistrationForm()	method.	If	you	want	new	users	to	register	with	a	view	other	than
auth.register	you	can	override	the	showRegistrationForm()	method	in	your
RegisterController.

Next,	it	handles	the	POST	of	the	registration	form	with	the	register()	method.	This	method
passes	the	user ’s	registration	input	to	the	validator	from	the	validator()	method	of	your
RegisterController,	and	then	on	to	the	create()	method.

And	finally,	the	redirectPath()	method	(pulled	in	via	the	RedirectsUsers	trait)	defines
where	users	should	be	redirected	after	a	successful	registration.	You	can	define	this	URI	with
the	redirectTo	property	on	your	controller,	or	you	can	override	the	redirectPath()	method
and	return	whatever	you	want.

If	you	want	this	trait	to	use	a	different	auth	guard	than	the	default	(you’ll	learn	more	about
guards	in	“Guards”),	you	can	override	the	auth()	method	and	have	it	return	whichever	guard
you’d	like.

LoginController
The	LoginController,	unsurprisingly,	allows	the	user	to	log	in.	It	brings	in	the
AuthenticatesUsers	trait,	which	brings	in	the	RedirectsUsers	and	ThrottlesLogins	traits.

Like	the	RegistrationController,	the	LoginController	has	a	$redirectTo	property	that
allows	you	to	customize	the	path	the	user	will	be	redirected	to	after	a	successful	login.
Everything	else	lives	behind	the	AuthenticatesUsers	trait.

AuthenticatesUsers	trait
The	AuthenticatesUsers	trait	is	responsible	for	showing	users	the	login	form,	validating
their	logins,	throttling	failed	logins,	handling	logouts,	and	redirecting	users	after	a	successful
login.

The	showLoginForm()	method	defaults	to	showing	the	user	the	auth.login	view,	but	you	can
override	it	if	you’d	like	it	to	use	a	different	view.

The	login()	method	accepts	the	POST	from	the	login	form.	It	validates	the	request	using	the
validateLogin()	method,	which	you	can	override	if	you’d	like	to	customize	the	validation.	It
then	hooks	into	the	functionality	of	the	ThrottlesLogins	trait,	which	we’ll	cover	shortly,	to
reject	users	with	too	many	failed	logins.	And	finally,	it	redirects	the	user,	either	to	her
intended	path	(if	the	user	was	redirected	to	the	login	page	when	attempting	to	visit	a	page
within	the	app)	or	to	the	path	defined	by	the	redirectPath()	method,	which	returns	your
$redirectTo	property.

The	trait	calls	the	empty	authenticated()	method	after	a	successful	login,	so	if	you’d	like	to
perform	any	sort	of	behavior	in	response	to	a	successful	login,	just	override	this	method	in
your	LoginController.

There’s	a	username()	method	that	defines	which	of	your	users	columns	is	the	“username”;
this	defaults	to	email	but	you	can	change	that	by	overwriting	the	username()	method	in	your
controller	to	return	the	name	of	your	username	column.

And,	like	in	the	RegistersUsers	trait,	you	can	override	the	guard()	method	to	define	which
auth	guard	(more	on	that	in	“Guards”)	this	controller	should	use.

ThrottlesLogins	trait
The	ThrottlesLogins	trait	is	an	interface	to	Laravel’s	Illuminate\Cache\RateLimiter	class,
which	is	a	utility	to	rate-limit	any	event	using	the	cache.	This	trait	applies	rate	limiting	to	user
logins,	limiting	users	from	using	the	login	form	if	they’ve	had	too	many	failed	logins	within
a	certain	amount	of	time.	This	functionality	does	not	exist	in	Laravel	5.1.

If	you	import	the	ThrottlesLogins	trait,	all	of	its	methods	are	protected,	which	means	they

can’t	actually	be	accessed	as	routes.	Instead,	the	AuthenticatesUsers	trait	looks	to	see	whether
you’ve	imported	the	ThrottlesLogins	trait,	and	if	so,	it’ll	attach	its	functionality	to	your
logins	without	any	work	on	your	part.	Since	the	default	LoginController	imports	both,	you’ll
get	this	functionality	for	free	if	you	use	the	auth	scaffold.

ThrottlesLogins	limits	any	given	combination	of	username	and	IP	address	to	5	attempts	per
60	seconds.	Using	the	cache,	it	increments	the	“failed	login”	count	of	a	given	username/IP
address	combination,	and	if	any	user	reaches	5	failed	login	attempts	within	60	seconds,	it
redirects	that	user	back	to	the	login	page	with	an	appropriate	error	until	the	60	seconds	is
over.

ResetPasswordController
The	ResetPasswordController	simply	pulls	in	the	ResetsPasswords	trait.	This	trait	provides
validation	and	access	to	basic	password	reset	views,	and	then	uses	an	instance	of	Laravel’s
PasswordBroker	class	(or	anything	else	implementing	the	PasswordBroker	interface,	if	you
choose	to	write	your	own)	to	handle	sending	password	reset	emails	and	actually	resetting	the
passwords.

Just	like	the	other	traits	we’ve	covered,	it	handles	showing	the	reset	password	view
(showResetForm()	shows	the	auth.passwords.reset	view),	and	the	POST	request	that	is	sent
from	that	view	(reset()	validates	and	sends	the	appropriate	response).	The	resetPassword()
method	actually	resets	the	password,	and	you	can	customize	the	broker	with	broker()	and	the
auth	guard	with	guard().

If	you’re	interested	in	customizing	any	of	this	behavior,	just	override	the	specific	method	you
want	to	customize	in	your	controller.

ForgotPasswordController
The	ForgotPasswordController	simply	pulls	in	the	SendsPasswordResetEmails	trait.	It	shows
the	auth.passwords.email	form	with	the	showLinkRequestForm()	method,	and	handles	the
POST	of	that	form	with	the	sendResetLinkEmail()	method.	You	can	customize	the	broker	with
the	broker()	method.

Auth::routes()
Now	that	we	have	the	auth	controllers	providing	some	methods	for	a	series	of	pre-defined
routes,	we’ll	want	our	users	to	actually	be	able	to	hit	those	routes.	We	could	add	all	these
routes	manually	to	routes/web.php,	but	there’s	already	a	convenience	tool	for	that,	called
Auth::routes():

//	routes/web.php

Auth::routes();

As	you	can	probably	guess,	Auth::routes()	brings	in	a	bundle	of	predefined	routes	to	your
routes	file.	In	Example	9-5	you	can	see	the	routes	that	are	actually	being	defined	there.

Example	9-5.	The	routes	provided	by	Auth::routes()
//	Authentication	Routes

$this->get('login',	'Auth\LoginController@showLoginForm');

$this->post('login',	'Auth\LoginController@login');

$this->get('logout',	'Auth\LoginController@logout');

//	Registration	Routes

$this->get('register',	'Auth\RegisterController@showRegistrationForm');

$this->post('register',	'Auth\RegisterController@register');

//	Password	Reset	Routes

$this->get('password/reset',	'Auth\ForgotPasswordController@showLinkRequestForm');

$this->post('password/email',	'Auth\ForgotPasswordController@sendResetLinkEmail');

$this->get('password/reset/{token}',	'Auth\ResetPasswordController@showResetForm');

$this->post('password/reset',	'Auth\ResetPasswordController@reset');

Basically,	Auth::routes()	includes	the	routes	for	authentication,	registration,	and	password
resets.

LARAVEL’S	CONTROLLER/METHOD	REFERENCE	SYNTAX

Laravel	has	a	convention	for	how	to	refer	to	a	particular	method	in	a	given	controller:	ControllerName@methodName.
Sometimes	this	is	just	a	casual	communication	convention,	but	it’s	also	used	in	real	bindings,	like	in	Example	9-5.	Laravel
parses	what’s	before	and	after	the	@	and	uses	those	segments	to	identify	the	controller	and	method.

The	Auth	Scaffold
At	this	point	you	have	a	migration,	a	model,	controllers,	and	routes	for	your	authentication
system.	But	what	about	your	views?

Laravel	handles	that	by	providing	an	auth	scaffold	(new	in	Laravel	5.2),	which	is	intended	to
be	run	on	a	new	application	and	provide	you	with	even	more	skeleton	code	to	get	your	auth
system	running	quickly.

The	auth	scaffold	takes	care	of	adding	Auth::routes()	to	your	routes	file,	adds	a	view	for
each	route,	and	creates	a	HomeController	to	serve	as	the	landing	page	for	logged-in	users;	it
also	routes	to	the	index()	method	of	HomeController	at	the	/home	URI.

Just	run	php	artisan	make:auth,	and	the	following	files	will	be	made	available	to	you:

app/Http/Controllers/HomeController.php

resources/views/auth/login.blade.php

resources/views/auth/register.blade.php

resources/views/auth/passwords/email.blade.php

resources/views/auth/passwords/reset.blade.php

resources/views/layouts/app.blade.php

resources/views/home.blade.php

At	this	point,	you	have	/	returning	the	welcome	view,	/home	returning	the	home	view,	and	a
series	of	auth	routes	for	login,	logout,	registration,	and	password	reset	pointing	to	the	auth
controllers.	Each	of	the	seeded	views	has	Bootstrap-based	layouts	and	form	fields	for	all
necessary	fields	for	login,	registration,	and	password	reset,	and	they	already	point	to	the
correct	routes.

At	this	point,	you	have	all	of	the	pieces	in	place	for	every	step	of	the	normal	user	registration
and	authentication	flow.	You	can	tweak	all	you	want,	but	you’re	entirely	ready	to	register	and
authenticate	users.

Let’s	review	quickly	the	steps	from	new	site	to	full	authentication	system:

laravel	new	MyApp

cd	MyApp

php	artisan	make:auth

php	artisan	migrate

That’s	it.	Run	those	commands,	and	you	will	have	a	landing	page	and	a	bootstrap-based	user
registration,	login,	logout,	and	password	reset	system,	with	a	basic	landing	page	for	all
authenticated	users.

“Remember	Me”
The	auth	scaffold	has	this	implemented	out	of	the	box,	but	it’s	still	worth	learning	how	it
works	and	how	to	use	it	on	your	own.	If	you	want	to	implement	a	“remember	me”–style	long-
lived	access	token,	make	sure	you	have	a	remember_token	column	on	your	users	table	(which
you	will	if	you	used	the	default	migration).

When	you’re	normally	logging	in	a	user	(and	this	is	how	the	LoginController	does	it,	with
the	AuthenticatesUsers	trait),	you’ll	“attempt”	an	authentication	with	the	user-provided
information,	like	in	Example	9-6.

Example	9-6.	Attempting	a	user	authentication
if	(auth()->attempt([

				'email'	=>	request()->input('email'),

				'password'	=>	request()->input('password')

]))	{

				//	Handle	the	successful	login

}

This	provides	you	with	a	user	login	that	lasts	as	long	as	the	user ’s	session.	If	you	want
Laravel	to	extend	the	login	indefinitely	using	cookies	(as	long	as	the	user	is	on	the	same
computer	and	doesn’t	log	out),	you	can	pass	a	boolean	true	as	the	second	parameter	of	the
auth()->attempt()	method.	Take	a	look	at	Example	9-7	to	see	what	that	request	looks	like.

Example	9-7.	Attempting	a	user	authentication	with	a	“remember	me”	checkbox	check
if	(auth()->attempt([

				'email'	=>	request()->input('email'),

				'password'	=>	request()->input('password')

]),	request()->has('remember'))	{

				//	Handle	the	successful	login

}

You	can	see	that	we	checked	whether	the	input	has	a	remember	property,	which	will	return	a
boolean.	This	allows	our	users	to	decide	if	they	want	to	be	remembered	with	a	checkbox	in
the	login	form.

And	later,	if	you	need	to	manually	check	whether	the	current	user	was	authenticated	by	a
remember	token,	there’s	a	method	for	that:	auth()->viaRemember()	returns	a	boolean
indicating	whether	or	not	the	current	user	authenticated	via	a	remember	token.	This	will	allow
you	to	prevent	certain	higher-sensitivity	features	from	being	accessible	by	remember	token,
and	you	can	require	users	to	reenter	their	passwords.

Manually	Authenticating	Users
The	most	common	case	for	user	authentication	is	that	you’ll	allow	the	users	to	provide	their
credentials,	and	then	use	auth()->attempt()	to	see	whether	the	provided	credentials	match
any	real	users.	If	so,	you	log	them	in.

But	sometimes	there	are	contexts	where	it’s	valuable	for	you	to	be	able	to	choose	to	log	a	user
in	on	your	own.	For	example,	you	may	want	to	allow	admin	users	to	switch	users.

There	are	two	methods	that	make	this	possible.	First,	you	can	just	pass	a	user	ID:

auth()->loginUsingId(5);

Second,	you	can	pass	a	User	object	(or	any	other	object	that	implements	the
Illuminate\Contracts\Auth\Authenticatable	contract):

auth()->login($user);

Auth	Middleware
In	Example	9-3,	we	saw	how	to	check	whether	visitors	are	logged	in	and	redirect	them	if	not.
You	could	perform	these	sorts	of	checks	on	every	route	in	your	application,	but	it	would	very
quickly	get	tedious.	It	turns	out	that	route	middleware	(see	Chapter	10	to	learn	more	about
how	they	work)	are	a	perfect	fit	for	restricting	certain	routes	to	guests	or	to	authenticated
users.

Once	again,	Laravel	comes	with	the	middleware	we	need	to	do	this	out	of	the	box.	You	can	see
which	route	middleware	you	have	defined	in	App\Http\Kernel:

protected	$routeMiddleware	=	[

				'auth'	=>	\Illuminate\Auth\Middleware\Authenticate::class,

				'auth.basic'	=>	\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

				'bindings'	=>	\Illuminate\Routing\Middleware\SubstituteBindings::class,

				'can'	=>	\Illuminate\Auth\Middleware\Authorize::class,

				'guest'	=>	\App\Http\Middleware\RedirectIfAuthenticated::class,

				'throttle'	=>	\Illuminate\Routing\Middleware\ThrottleRequests::class,

];

Three	of	the	default	route	middleware	are	authentication-related:	auth	restricts	route	access	to
authenticated	users,	auth.basic	restricts	access	to	authenticated	users	using	HTTP	Basic
Authentication,	and	guest	restricts	access	to	unauthenticated	users.	can	is	used	for	authorizing
user	access	to	given	routes.

It’s	most	common	to	use	auth	for	your	authenticated-user-only	sections	and	guest	for	any
routes	you	don’t	want	authenticated	users	to	see	(like	the	login	form).	auth.basic	is	a	much
less	commonly	used	middleware	for	authenticating	via	request	headers.

Example	9-8	shows	a	few	sample	routes	protected	by	the	auth	middleware.

Example	9-8.	Sample	routes	protected	by	auth	middleware
Route::group(['middleware'	=>	'auth'],	function	()	{

				Route::get('account',	'AccountController@dashboard');

});

Route::get('login',	'Auth\LoginController@getLogin')->middleware('guest');

Guards
Every	aspect	of	Laravel’s	authentication	system	is	routed	through	something	called	a	guard.
Each	guard	is	a	combination	of	two	pieces:	a	driver	that	defines	how	it	persists	and	retrieves
the	authentication	state	(for	example,	session),	and	a	provider	that	allows	you	to	get	a	user	by
certain	criteria	(for	example,	users).

Out	of	the	box	Laravel	has	two	guards:	web	and	api.	web	is	the	more	traditional	authentication
style,	using	the	session	driver	and	the	basic	user	provider.	api	also	uses	the	same	user
provider,	but	it	uses	the	token	driver	instead	of	the	session	to	authenticate	each	request.

You’d	change	drivers	if	you	wanted	to	handle	the	identification	and	persistence	of	a	user ’s
identity	differently	(for	example,	changing	from	a	long-running	session	to	a	provided-every-
page-load	token),	and	you’d	change	providers	if	you	wanted	to	change	the	storage	type	or
retrieval	methods	for	your	users	(for	example,	moving	to	storing	your	users	in	Mongo
instead	of	MySQL).

Changing	the	Default	Guard
The	guards	are	defined	in	config/auth.php,	and	you	can	change	them,	add	new	guards,	and
also	define	which	guard	will	be	the	default	there.

The	default	guard	will	be	that	which	is	used	any	time	you	use	any	auth	features.	auth()-
>user()	will	pull	the	currently	authenticated	user	using	the	default	guard.	You	can	change	this
guard	by	changing	the	auth.defaults.guard	setting	in	config/auth.php:

				'defaults'	=>	[

								'guard'	=>	'web',	//	Change	the	default	here

								'passwords'	=>	'users',

],

If	you’re	using	Laravel	5.1,	you’ll	notice	that	the	structure	of	the	authentication	information	is
a	little	different	from	this.	Don’t	worry;	the	features	all	still	work	the	same,	they’re	just
structured	differently.

CONFIGURATION	CONVENTIONS
You	may	have	noticed	that	I	refer	to	configuration	sections	with	references	like	auth.defaults.guard.	What	that
translates	to	is:	in	config/auth.php,	in	the	array	section	keyed	defaults,	there	should	be	a	property	keyed	guard.
That	one	is	auth.defaults.guard.

Using	Other	Guards	Without	Changing	the	Default
If	you	want	to	use	another	guard,	but	not	change	the	default,	you	can	start	your	Auth	calls	with
guard():

$apiUser	=	auth()->guard('api')->user();

This	will,	just	for	this	call,	get	the	current	user	using	the	api	guard.

Adding	a	New	Guard
You	can	add	a	new	guard	at	any	time	in	config/auth.php,	in	the	auth.guards	setting:

				'guards'	=>	[

								'trainees'	=>	[

												'driver'	=>	'session',

												'provider'	=>	'trainees',

],

],

As	you	can	see	here,	we’ve	created	a	new	guard	(in	addition	to	web	and	api)	named	trainees.
Let’s	imagine,	for	the	rest	of	this	section,	that	we’re	building	an	app	where	our	users	are
physical	trainers	and	they	each	have	their	own	users	—	trainees	—	who	can	log	in	to	their
subdomains.	So,	we	need	a	separate	guard	for	them.

The	only	two	options	for	driver	are	token	and	session.	Out	of	the	box,	the	only	option	for
provider	is	users,	but	you	can	create	your	own	provider	easily.

Creating	a	Custom	User	Provider
Just	below	where	the	guards	are	defined	in	config/auth.php,	there’s	an	auth.providers
section	that	defines	the	available	providers.	Let’s	create	a	new	provider	named	trainees:

				'providers'	=>	[

								'users'	=>	[

												'driver'	=>	'eloquent',

												'model'	=>	App\User::class,

],

								'trainees'	=>	[

												'driver'	=>	'eloquent',

												'model'	=>	App\Trainee::class,

],

],

The	two	options	for	driver	are	eloquent	and	database;	if	you	use	eloquent,	you’ll	need	a
model	property	that	contains	an	Eloquent	class	name	(the	model	to	use	for	your	User	class),
and	if	you	use	database,	you’ll	need	a	table	property	to	define	which	table	it	should
authenticate	against.

In	our	example,	you	can	see	that	this	application	has	a	User	and	a	Trainee,	and	they	need	to	be
authenticated	separately.	This	way,	the	code	can	differentiate	between	auth()->guard(users)
and	auth()->guard(trainees).

One	last	note:	the	auth	route	middleware	can	take	a	parameter	that	is	the	guard	name.	So,	you
can	guard	certain	routes	with	a	specific	guard:

Route::group(['middleware'	=>	'auth:trainees'],	function	()	{

				//	Trainee-only	routes	here

});

Custom	User	Providers	for	Nonrelational	Databases
The	user	provider	creation	flow	just	described	still	relies	on	the	same	UserProvider	class,
which	means	it’s	expecting	to	pull	the	identifying	information	out	of	a	relational	database.	But
if	you’re	using	Mongo	or	Riak	or	something	similar,	you’ll	actually	need	to	create	your	own
class.

To	do	this,	create	a	new	class	that	implements	the	Illuminate\Contracts\Auth\UserProvider
interface,	and	then	bind	it	in	AuthServiceProvider@boot:

auth()->provider('riak',	function	($app,	array	$config)	{

				//	Return	an	instance	of	Illuminate\Contracts\Auth\UserProvider...

				return	new	RiakUserProvider($app['riak.connection']);

});

Auth	Events
We’ll	talk	more	about	events	in	Chapter	16,	but	Laravel’s	event	system	is	a	basic	pub/sub
framework.	There	are	system-	and	user-generated	events	that	are	broadcast,	and	the	user	has
the	ability	to	create	event	listeners	that	do	certain	things	in	response	to	certain	events.

So,	what	if	you	wanted	to	send	a	ping	to	a	particular	security	service	every	time	a	user	was
locked	out	after	too	many	failed	login	attempts?	Maybe	this	service	watches	out	for	a	certain
number	of	failed	logins	from	certain	geographic	regions,	or	something	else.	You	could,	of
course,	inject	a	call	in	the	appropriate	controller.	But	with	events,	you	can	just	create	an	event
listener	that	listens	to	the	“user	locked	out”	event,	and	register	that.

Take	a	look	at	Example	9-9	to	see	all	of	the	events	that	the	authentication	system	emits.

Example	9-9.	Authentication	events	generated	by	the	framework
protected	$listen	=	[

				'Illuminate\Auth\Events\Attempting'	=>	[],

				'Illuminate\Auth\Events\Login'	=>	[],

				'Illuminate\Auth\Events\Logout'	=>	[],

				'Illuminate\Auth\Events\Lockout'	=>	[],

];

As	you	can	see,	there	are	listeners	for	“user	attempting	login,”	“successful	login,”	“logout,”
and	“lockout.”	To	learn	more	about	how	to	build	event	listeners	for	these	events,	check	out
Chapter	16.

Authorization	(ACL)	and	Roles
Finally,	let’s	cover	Laravel’s	authorization	system.	It	enables	you	to	determine	whether	a	user
is	authorized	to	do	a	particular	thing,	which	you’ll	check	using	a	few	primary	verbs:	can,
cannot,	allows,	and	denies.	The	access	control	list	(ACL)	system	is	new	in	Laravel	5.2.

Most	of	this	authorization	control	will	be	performed	using	the	Gate	facade,	but	there	are	also
convenience	helpers	in	your	controllers,	on	the	User	model,	as	middleware,	and	available	as
Blade	directives.	Take	a	look	at	this	example	to	get	a	taste	of	what	we’ll	be	able	to	do:

if	(Gate::denies('edit',	$contact))	{

				abort(403);

}

if	(!	Gate::check('create',	Contact::class))	{

				abort(403);

}

Defining	Authorization	Rules
The	default	place	to	define	authorization	rules	is	the	boot()	method	of	the
AuthServiceProvider.	It	should	already	have	an	instance	of
Illuminate\Contracts\Auth\Access\Gate	(aliased	as	GateContract)	typehinted	and	injected
as	$gate.

An	authorization	rule	is	called	an	ability,	and	is	comprised	of	two	things:	a	string	key	(e.g.,
update-contact)	and	a	closure	that	returns	a	boolean.	Example	9-10	shows	an	ability	for
updating	a	contact.

Example	9-10.	Sample	ability	for	updating	a	contact
class	AuthServiceProvider	extends	ServiceProvider

{

				public	function	boot(GateContract	$gate)

				{

								$this->registerPolicies($gate);

								$gate->define('update-contact',	function	($user,	$contact)	{

												return	$user->id	===	$contact->user_id;

								});

				}

}

Let’s	walk	through	the	steps	for	defining	an	ability.

First,	you	want	to	define	a	key.	In	naming	this	key,	you	should	consider	what	string	makes
sense	in	your	code’s	flow	to	refer	to	the	ability	you’re	providing	the	user.	You	can	see	the
code	sample	uses	the	convention	{verb}-{modelName}:	create-contact,	update-contact,
etc.

Second,	you	define	the	closure.	The	first	parameter	will	be	the	currently	authenticated	user,
and	all	parameters	after	that	will	be	the	object(s)	you’re	checking	for	access	to	—	in	this
instance,	the	contact.

So,	given	those	two	objects,	we	can	check	whether	the	user	is	authorized	to	update	this	contact.
You	can	write	this	logic	however	you	want,	but	in	the	app	we’re	looking	at	at	the	moment,
authorization	depends	on	being	the	creator	of	the	contact	row.	The	closure	will	return	true
(authorized)	if	the	current	user	created	the	contact,	and	false	(unauthorized)	if	not.

Just	like	with	route	definitions,	you	could	also	use	a	class	and	method	instead	of	a	closure	to
resolve	this	definition:

$gate->define('update-contact',	'ContactACLChecker@updateContact');

The	Gate	Facade	(and	Injecting	Gate)
Now	that	you’ve	defined	an	ability,	it’s	time	to	test	against	it.	The	simplest	way	is	to	use	the
Gate	facade,	as	in	Example	9-11	(or	you	can	inject	an	instance	of
Illuminate\Contracts\Auth\Access\Gate).

Example	9-11.	Basic	Gate	facade	usage
if	(Gate::allows('update-contact',	$contact))	{

				//	Update	contact

}

//	or...

if	(Gate::denies('update-contact',	$contact))	{

				abort(403);

}

You	might	also	define	an	ability	with	multiple	parameters	—	maybe	a	contact	can	be	in
groups,	and	you	want	to	authorize	whether	the	user	has	access	to	add	a	contact	to	a	group.
Example	9-12	shows	how	to	do	this.

Example	9-12.	Abilities	with	multiple	parameters
//	Definition

$gate->define('add-contact-to-group',	function	($user,	$contact,	$group)	{

				return	$user->id	===	$contact->user_id	&&	$user->id	===	$group->user_id;

});

//	Usage

if	(Gate::denies('add-contact-to-group',	[$contact,	$group]))	{

				abort(403);

}

And	if	you	need	to	check	authorization	for	a	user	other	than	the	currently	authenticated	user,
try	forUser(),	like	in	Example	9-13.

Example	9-13.	Specifying	the	user	for	Gate
if	(Gate::forUser($user)->denies('create-contact'))	{

				abort(403);

}

The	Authorize	Middleware
If	you	want	to	authorize	entire	routes,	you	can	use	the	Authorize	middleware	(which	has	a
shortcut	of	can),	like	in	Example	9-14.

Example	9-14.	Using	the	Authorize	middleware
Route::get('people/create',	function	()	{

				//	Create	person...

})->middleware('can:create-person');

Route::get('people/{person}/edit',	function	()	{

				//	Create	person...

})->middleware('can:create,person');

Here,	the	{person}	parameter	(whether	it’s	defined	as	a	string	or	as	a	bound	route	model)	will
be	passed	to	the	ability	method	as	an	additional	parameter.

Controller	Authorization
The	parent	App\Http\Controllers\Controller	class	in	Laravel	imports	the
AuthorizesRequests	trait,	which	provides	three	methods	for	authorization:	authorize(),
authorizeForUser(),	and	authorizeResource().

authorize()	takes	an	ability	key	and	an	object	(or	array	of	objects)	as	parameters,	and	if	the
authorization	fails,	it’ll	quit	the	application	with	a	403	(Unauthorized)	status	code.	That	means
this	feature	can	turn	three	lines	of	authorization	code	into	just	one,	as	you	can	see	in
Example	9-15.

Example	9-15.	Simplifying	controller	authorization	with	authorize()
//	From	this:

public	function	show($contactId)

{

				$contact	=	Contact::findOrFail($contactId);

				if	(Gate::cannot('update-contact',	$contact))	{

								abort(403);

				}

}

//	To	this:

public	function	show($contactId)

{

				$contact	=	Contact::findOrFail($contactId);

				$this->authorize('update-contact',	$contact);

}

authorizeForUser()	is	the	same,	but	allows	you	to	pass	in	a	User	object	instead	of	defaulting
to	the	currently	authenticated	user:

$this->authorizeForUser($user,	'update-contact',	$contact);

authorizeResource(),	called	once	in	the	controller	constructor,	maps	a	predefined	set	of
authorization	rules	to	each	of	the	RESTful	controller	methods	in	that	controller	—	something
like	Example	9-16.

Example	9-16.	The	authorization-to-method	mappings	of	authorizeResource()
...

class	ContactsController	extends	Controller

{

				public	function	__construct()

				{

								//	This	call	does	everything	you	see	in	the	methods	below.

								//	If	you	put	this	here,	you	can	remove	all	authorize

								//	calls	in	the	individual	resource	methods	here.

								$this->authorizeResource(Contact::class);

				}

				public	function	index()

				{

								$this->authorize('view',	Contact::class);

				}

				public	function	create()

				{

								$this->authorize('create',	Contact::class);

				}

				public	function	store(Request	$request)

				{

								$this->authorize('create',	Contact::class);

				}

				public	function	show(Contact	$contact)

				{

								$this->authorize('view',	$contact);

				}

				public	function	edit(Contact	$contact)

				{

								$this->authorize('update',	$contact);

				}

				public	function	update(Request	$request,	Contact	$contact)

				{

								$this->authorize('update',	$contact);

				}

				public	function	destroy(Contact	$contact)

				{

								$this->authorize('delete',	$contact);

				}

}

Checking	on	the	User	Instance
If	you’re	not	in	a	controller,	you’re	more	likely	to	be	checking	the	capabilities	of	a	specific
user	than	the	currently	authenticated	user.	That’s	already	possible	with	the	Gate	facade	using
the	forUser()	method,	but	sometimes	the	syntax	can	feel	a	little	off.

Thankfully,	the	Authorizable	trait	on	the	User	class	provides	three	methods	to	make	a	more
readable	authorization	feature:	$user->can(),	$user->cant(),	and	$user->cannot().	As	you
can	probably	guess,	cant()	and	cannot()	do	the	same	thing,	and	can()	is	their	exact	inverse.

That	means	you	can	do	something	like	Example	9-17.

Example	9-17.	Checking	authorization	on	a	user	instance
$user	=	User::find(1);

if	($user->can('create-contact'))	{

				//	do	something

}

Behind	the	scenes,	these	methods	are	just	passing	your	params	to	Gate;	in	the	preceding
example,	Gate::forUser($user)->can('create-contact').

Blade	Checks
Blade	also	has	a	little	convenience	helper:	a	@can	directive.	Example	9-18	illustrates	its	usage.

Example	9-18.	Using	Blade’s	@can	directive
<nav>

				Home

				@can('edit-contact',	$contact)

								id])	}}">Edit	This	Contact

				@endcan

</nav>

You	can	also	use	@else	in	between	@can	and	@endcan,	and	you	can	use	@cannot	and
@endcannot	as	in	Example	9-19.

Example	9-19.	Using	Blade’s	@cannot	directive
<h1>{{	$contact->name	}}</h1>

@cannot('edit-contact',	$contact)

				LOCKED

@endcannot

Intercepting	Checks
If	you’ve	ever	built	an	app	with	an	admin	user	class,	you’ve	probably	looked	at	all	of	the
simple	authorization	closures	so	far	in	this	chapter	and	thought	about	how	you	could	add	a
superuser	class	that	overrides	these	checks	in	every	case.	Thankfully,	there’s	already	a	tool
for	that.

In	AuthServiceProvider,	where	you’re	already	defining	your	abilities,	you	can	also	add	a
before()	check	that	runs	before	all	the	others	and	can	optionally	override	them,	like	in
Example	9-20.

Example	9-20.	Overriding	Gate	checks	with	before()
$gate->before(function	($user,	$ability)	{

				if	($user->isOwner())	{

								return	true;

				}

});

Note	that	the	string	name	for	the	ability	is	also	passed	in,	so	you	can	differentiate	your	before
hooks	based	on	your	ability	naming	scheme.

Policies
Up	until	this	point,	all	of	the	access	controls	have	required	you	to	manually	associate
Eloquent	models	with	the	ability	names.	You	could	have	created	an	ability	named	something
like	visit-dashboard	that’s	not	related	to	a	specific	Eloquent	model,	but	you’ll	probably	have
noticed	that	most	of	our	examples	have	had	to	do	with	doing	something	to	something	—	and	in
most	of	these	cases,	the	something	that’s	the	recipient	of	the	action	is	an	Eloquent	model.

Authorization	policies	are	organizational	structures	that	help	you	group	your	authorization
logic	based	on	the	resource	you’re	controlling	access	to.	They	make	it	easy	to	manage
defining	authorization	rules	for	behavior	toward	a	particular	Eloquent	model	(or	other	PHP
class),	all	together	in	a	single	location.

Generating	policies
Policies	are	PHP	classes,	which	can	be	generated	with	an	Artisan	command:

php	artisan	make:policy	ContactPolicy

Once	they’re	generated,	they	need	to	be	registered.	The	AuthServiceProvider	has	a
$policies	property,	which	is	an	array.	The	key	of	each	item	is	the	class	name	of	the	protected
resource	(usually,	but	not	always,	an	Eloquent	class),	and	the	value	is	the	policy	class	name:

class	AuthServiceProvider	extends	ServiceProvider

{

				protected	$policies	=	[

								Contact::class	=>	ContactPolicy::class,

]

A	policy	class	that’s	generated	by	Artisan	doesn’t	have	any	special	properties	or	methods.	But
every	method	that	you	add	is	now	mapped	as	an	ability	key	for	this	object.

Let’s	define	an	update()	method	to	take	a	look	at	how	it	works	(Example	9-21).

Example	9-21.	A	sample	update()	policy	method
<?php

namespace	App\Policies;

class	ContactPolicy

{

				public	function	update($user,	$contact)

				{

								return	$user->id	===	$contact->user_id;

				}

}

Notice	that	the	contents	of	this	method	look	exactly	like	they	would	in	a	Gate	definition.

POLICY	METHODS	THAT	DON’T	TAKE	AN	INSTANCE,	BEFORE	5.3
In	Laravel	5.2,	if	you	want	to	define	a	policy	method	that	relates	to	the	class	but	not	a	specific	instance	—	for
example,	“can	this	user	create	contacts	at	all?”	rather	than	just	“can	this	user	view	this	specific	contact?”	—	create
that	method	and	add	“Any”	at	the	end	of	its	name:

...

class	ContactPolicy

{

				public	function	createAny($user)

				{

								return	$user->canCreateContacts();

				}

In	Laravel	5.3,	you	can	drop	the	Any	suffix	and	treat	this	just	like	a	normal	method.

Checking	policies
If	there’s	a	policy	defined	for	a	resource	type,	the	Gate	will	use	the	first	parameter	to	figure
out	which	method	to	check	on	your	policy.	If	you	run	Gate::allows('update',	$contact),	it
will	check	the	ContactPolicy@update	method	for	authorization.

This	also	works	for	the	Authorize	middleware	and	for	User	model	checking	and	Blade
checking,	as	seen	in	Example	9-22.

Example	9-22.	Checking	authorization	against	a	policy
//	Gate

if	(Gate::denies('update',	$contact))	{

				abort(403);

}

//	Gate	if	you	don't	have	an	explicit	instance

if	(!	Gate::check('create',	Contact::class))	{

				abort(403);

}

//	User

if	($user->can('update',	$contact))	{

				//	Do	stuff

}

//	Blade

@can('update',	$contact)

				<!--	show	stuff	-->

@endcan

Additionally,	there’s	a	policy()	helper	that	allows	you	to	retrieve	a	policy	class	and	run	its
methods:

if	(policy($contact)->update($user,	$contact))	{

				//	Do	stuff

}

Overriding	policies
Just	like	with	normal	ability	definitions,	policies	can	define	a	before()	method	that	allows

you	to	override	any	call	before	it’s	even	processed	(see	Example	9-23).

Example	9-23.	Overriding	policies	with	the	before()	method
public	function	before($user,	$ability)

{

				if	($user->isAdmin())	{

								return	true;

				}

}

PASSPORT	AND	OAUTH

There’s	a	Laravel	package	called	Passport	that	makes	it	easy	to	set	up	your	own	OAuth	server	as	a	part	of	your	Laravel
app.	Take	a	look	at	“API	Authentication	with	Laravel	Passport”	to	learn	more	about	how	it	works.

Testing
Application	tests	often	need	to	perform	a	particular	behavior	on	behalf	of	a	particular	user.
We	therefore	need	to	be	able	to	authenticate	as	a	user	in	application	tests,	and	we	need	to	test
authorization	rules	and	authentication	routes.

Of	course,	it’s	possible	to	write	an	application	test	that	manually	visits	the	login	page	and	then
fills	out	the	form	and	submits	it,	but	that’s	not	necessary.	Instead,	the	simplest	option	is	to	use
the	->be()	method	to	simulate	being	logged	in	as	a	user.	Take	a	look	at	Example	9-24.

Example	9-24.	Authenticating	as	a	user	in	application	tests
public	function	test_it_creates_a_new_contact()

{

				$user	=	factory(User::class)->create();

				$this->be($user);

				$this->post('contacts',	[

								'email'	=>	'my@email.com'

]);

				$this->seeInDatabase('contacts',	[

								'email'	=>	'my@email.com',

								'user_id'	=>	$user->id,

]);

}

We	can	also	test	authorization	like	in	Example	9-25.

Example	9-25.	Testing	authorization	rules
public	function	test_non_admins_cant_create_users()

{

				$user	=	factory(User::class)->create([

								'admin'	=>	false

]);

				$this->be($user);

				$this->post('users',	['email'	=>	'my@email.com']);

				$this->dontSeeInDatabase('users',	[

								'email'	=>	'my@email.com'

]);

}

Or	we	can	test	for	a	403	response	like	in	Example	9-26.

Example	9-26.	Testing	authorization	rules	by	checking	status	code
public	function	test_non_admins_cant_create_users()

{

				$user	=	factory(User::class)->create([

								'admin'	=>	false

]);

				$this->be($user);

				$this->post('users',	['email'	=>	'my@email.com']);

				$this->assertResponseStatus(403);

}

We	need	to	test	that	our	authentication	(sign	up	and	sign	in)	routes	work	too,	as	illustrated	in
Example	9-27.

Example	9-27.	Testing	authentication	routes
public	function	test_users_can_register()

{

				$this->post('register',	[

								'name'	=>	'Sal	Leibowitz',

								'email'	=>	'sal@leibs.net',

								'password'	=>	'abcdefg123',

								'password_confirmation'	=>	'abcdefg123',

]);

				$this->followRedirects()->assertResponseOk();

				$this->seeInDatabase('users',	[

								'name'	=>	'Sal	Leibowitz',

								'email'	=>	'sal@leibs.net',

]);

}

public	function	test_users_can_log_in()

{

				$user	=	factory(User::class)->create([

								'password'	=>	bcrypt('abcdefg123')

]);

				$this->post('login',	[

								'email'	=>	$user->email,

								'password'	=>	'abcdefg123',

]);

				$this->followRedirects()->assertResponseOk();

				$this->assertTrue(auth()->check());

}

You	could	also	use	the	integration	test	features	to	direct	the	test	to	“click”	your	authentication
fields	and	“submit”	the	fields	to	test	the	entire	flow.

TL;DR
Between	the	default	User	model,	the	create_users_table	migration,	the	auth	controllers,	and
the	auth	scaffold,	Laravel	comes	with	a	full	user	authentication	system	out	of	the	box.	The
RegisterController	handles	user	registration,	the	LoginController	handles	user
authentication,	and	the	ResetPasswordController	and	the	ForgotPasswordController	handle
password	resets.	Each	has	certain	properties	and	methods	that	can	be	used	to	override	some	of
the	default	behavior.

The	Auth	facade	and	the	auth()	global	helper	provide	access	to	the	current	user	(auth()-
>user())	and	makes	it	easy	to	check	whether	a	user	is	logged	in	(auth()->check()	and
auth()->guest()).

Laravel	also	has	an	authorization	system	built	in	that	allows	you	to	define	specific	abilities
(create-contact,	visit-secret-page)	or	define	policies	for	user	interaction	with	entire
models.

You	can	check	for	authorization	with	the	Gate	facade,	the	->can()	and	->cannot()	methods
on	the	User	class,	the	@can	and	@cannot	directives	in	Blade,	the	->authorize()	methods	on	the
controller,	or	the	can	middleware.

Chapter	10.	Requests	and	Responses

We’ve	already	covered	the	Illuminate	Request	object	a	bit	—	how	you	can	typehint	it	in
constructors	to	get	an	instance,	and	then	use	that	to	get	information	about	the	user ’s	input.	In
Chapter	3,	for	example,	we	saw	how	you	can	typehint	it	in	constructors	to	get	an	instance,	and
in	Chapter	6	we	looked	at	how	you	can	use	it	to	get	information	about	the	user ’s	input.

In	this	chapter,	we’ll	learn	more	about	what	that	Request	object	is,	how	it’s	generated	and	what
it	represents,	and	what	part	it	plays	in	your	application’s	lifecycle.	We’ll	also	talk	about	the
Response	object	and	Laravel’s	implementation	of	the	middleware	pattern.

Laravel’s	Request	Lifecycle
Every	request	coming	into	a	Laravel	application,	whether	generated	by	an	HTTP	request	or	a
command-line	interaction,	is	immediately	converted	into	an	Illuminate	Request	object,	which
then	crosses	many	layers	and	ends	up	being	parsed	by	the	application	itself.	The	application
then	generates	an	Illuminate	Response	object,	which	is	sent	back	out	across	those	layers	and
finally	returned	to	the	end	user.

This	request/response	lifecycle	is	illustrated	in	Figure	10-1.

Let’s	take	a	look	at	what	it	takes	to	make	each	of	these	steps	happen,	from	the	first	line	of	code
to	the	last.

Every	Laravel	application	has	some	form	of	configuration	set	up	at	the	web	server	level,	in	an
.htaccess	file	or	an	Nginx	configuration	setting	or	something	similar,	that	captures	every	web
request	regardless	of	URL	and	routes	it	to	public/index.php	in	the	Laravel	application
directory	(app).

Figure	10-1.	Request/response	lifecycle

Bootstrapping	the	Application
index.php	doesn’t	actually	have	that	much	code	in	it.	It	has	three	primary	functions.

First,	it	loads	Composer ’s	autoload	file	and	Laravel’s	compiled	application	cache,	which	lives
at	bootstrap/cache/compiled.php.	This	file	is	what’s	generated	when	you	run	php	artisan
optimize,	and	it	preloads	all	of	the	most	commonly	used	classes	for	faster	loading.

COMPOSER 	AND	LARAVEL

Laravel’s	core	functionality	is	separated	into	a	series	of	components	under	the	Illuminate	namespace,	which	are	all
pulled	into	each	Laravel	app	using	Composer.	Laravel	also	pulls	in	quite	a	few	packages	from	Symfony	and	several
other	community-developed	packages.	In	this	way,	Laravel	is	just	as	much	an	opinionated	collection	of	components	as	it
is	a	framework.

Next,	it	kicks	off	Laravel’s	bootstrap,	creating	the	application	container	(you’ll	learn	more
about	the	container	in	Chapter	11)	and	registering	a	few	core	services	(including	the	kernel,
which	we’ll	talk	about	in	just	a	bit).

Finally,	it	creates	an	instance	of	the	kernel,	creates	a	request	representing	the	current	user ’s
web	request,	and	passes	the	request	to	the	kernel	to	handle.	The	kernel	responds	with	an
Illuminate	Response	object,	which	index.php	then	returns	to	the	end	user,	and	terminates	the
page	request.

Laravel’s	kernel
The	kernel	is	the	core	router	of	every	Laravel	application,	responsible	for	taking	in	a	user
request,	processing	it	through	middleware	and	handling	exceptions	and	passing	it	to	the	page
router,	and	then	returning	the	final	response.	There	are	actually	two	kernels,	but	only	one	is
used	for	each	page	request.	One	of	the	routers	handles	web	requests	(the	HTTP	kernel)	and	the
other	handles	console,	cron,	and	Artisan	requests	(the	console	kernel).	Each	has	a	handle()
method	that’s	responsible	for	taking	in	an	Illuminate	Request	object	and	returning	an
Illuminate	Response	object.

The	kernel	runs	all	of	the	bootstraps	that	need	to	run	before	every	request,	including
determining	which	environment	the	current	request	is	running	in	(staging,	local,	production,
etc.)	and	running	all	of	the	service	providers.	The	HTTP	kernel	additionally	defines	the	list	of
middleware	that	will	wrap	each	request,	including	the	core	middleware	responsible	for
sessions	and	CSRF	protection.

Service	Providers
While	there’s	a	bit	of	procedural	code	in	these	bootstraps,	almost	all	of	Laravel’s	bootstrap
code	is	separated	into	something	Laravel	calls	service	providers.	A	service	provider	is	a	class
that	encapsulates	logic	that	various	parts	of	your	application	need	to	run	in	order	to	bootstrap
their	core	functionality.

For	example,	there’s	an	AuthServiceProvider	that	bootstraps	all	of	the	registrations
necessary	for	Laravel’s	authentication	system	and	a	RouteServiceProvider	that	bootstraps	the
routing	system.

The	concept	of	service	providers	can	be	a	little	hard	to	understand	at	first,	so	think	about	it
this	way:	many	components	of	your	application	have	bootstrap	code	that	needs	to	run	when
the	application	initializes.	Service	providers	are	a	tool	for	grouping	that	bootstrap	code	into
related	classes.	If	you	have	any	code	that	needs	to	run	in	preparation	for	your	application
code	to	work,	it’s	a	strong	candidate	for	a	service	provider.

For	example,	if	you	ever	find	that	the	feature	you’re	working	on	requires	some	classes
registered	in	the	container	(we’ll	learn	more	about	this	in	Chapter	11),	you	would	create	a
service	provider	just	for	that	piece	of	functionality.	You	might	have	a
GitHubServiceProvider	or	a	MailerServiceProvider.

Service	providers	have	two	important	methods:	boot()	and	register().	There’s	also	a
$defer	property	that	you	might	choose	to	use.	Here’s	how	they	work.

First,	all	of	the	service	providers’	register()	methods	are	called.	This	is	where	we	want	to
bind	classes	and	aliases	to	the	container.	You	don’t	want	to	do	anything	in	register()	that
relies	on	the	entire	application	being	bootstrapped.

Second,	all	of	the	service	providers’	boot()	methods	are	called.	You	can	now	do	any	other
bootstrapping	here,	like	binding	event	listeners	or	defining	routes	—	anything	that	may	rely
on	the	entire	Laravel	application	having	been	bootstrapped.

If	your	service	provider	is	only	going	to	register	bindings	in	the	container	(i.e.,	teach	the
container	how	to	resolve	a	given	class	or	interface),	but	not	perform	any	other	bootstrapping,
you	can	“defer”	its	registrations,	which	means	they	won’t	run	unless	one	of	their	bindings	is
explicitly	requested	from	the	container.	This	can	speed	up	your	application’s	average	time	to
bootstrap.

If	you	want	to	defer	your	service	provider ’s	registrations,	first	give	it	a	protected	$defer
property	and	set	it	to	true,	and	then	give	it	a	provides()	method	that	returns	a	list	of	bindings
the	provider	provides,	as	shown	in	Example	10-1.

Example	10-1.	Deferring	the	registration	of	a	service	provider
...

class	GitHubServiceProvider	extends	ServiceProvider

{

				protected	$defer	=	true;

				public	function	provides()

				{

								return	[

												GitHubClient::class

];

				}

MORE	USES	FOR	SERVICE	PROVIDERS
Service	providers	also	have	a	suite	of	methods	and	configuration	options	that	can	provide	advanced	functionality
to	the	end	user	when	the	provider	is	published	as	part	of	a	Composer	package.	Take	a	look	at	the	service	provider
definition	in	the	Laravel	source	to	learn	more	about	how	this	can	work.

Now	that	we’ve	covered	the	application	bootstrap,	let’s	take	a	look	at	the	Request	object,	the
most	important	output	of	the	bootstrap.

http://bit.ly/2eQtW0s

The	Request	Object
The	Illuminate	Request	class	is	a	Laravel-specific	extension	of	Symfony’s
HttpFoundation\Request	object.

SYMFONY	HTTPFOUNDATION

If	you’re	not	familiar	with	it,	Symfony’s	HttpFoundation	suite	of	classes	powers	almost	every	PHP	framework	in
existence	at	this	point;	this	is	the	most	popular	and	powerful	set	of	abstractions	available	in	PHP	for	representing	HTTP
requests,	responses,	headers,	cookies,	and	more.

Each	Request	object	is	intended	to	represent	every	relevant	piece	of	information	you	could
care	to	know	about	a	user ’s	HTTP	request.

In	native	PHP	code,	you	might	find	yourself	looking	to	$_SERVER,	$_GET,	$_POST,	and	other
combinations	of	globals	and	processing	logic	to	get	information	about	the	current	user ’s
request.	What	files	has	the	user	uploaded?	What’s	his	IP	address?	What	fields	did	he	post?	All
of	this	is	sprinkled	around	the	language	—	and	your	code	—	in	a	way	that’s	hard	to
understand	and	harder	to	mock.

Symfony’s	Request	object	instead	collects	all	of	the	information	necessary	to	represent	a
single	HTTP	request	into	a	single	object,	and	then	tacks	on	convenience	methods	to	make	it
easy	to	get	useful	information	from	it.	The	Illuminate	Request	object	adds	even	more
convenience	methods	to	get	information	about	the	request	it’s	representing.

CAPTURING	A	REQUEST
You’ll	very	likely	never	need	to	do	this	in	a	Laravel	app,	but	if	you	ever	need	to	capture	your	own	Illuminate
Request	directly	from	PHP’s	globals,	you	can	use	the	capture()	method:

$request	=	Illuminate\Http\Request::capture();

Getting	a	Request	Object	in	Laravel
Realistically,	you’re	not	going	to	be	capturing	your	own	requests.	Laravel	does	this	for	you	in
its	bootstrap,	and	there	are	a	few	ways	you	can	get	access	to	it.

First	—	and	again,	we’ll	cover	this	more	in	Chapter	11	—	you	can	typehint	the	class	in	any
constructor	or	method	that’s	resolved	by	the	container.	That	means	you	can	typehint	it	in	a
controller	method	or	a	service	provider,	as	seen	in	Example	10-2.

Example	10-2.	Typehinting	in	a	container-resolved	method	to	receive	a	Request	object
...

use	Illuminate\Http\Request;

class	PeopleController	extends	Controller

{

				public	function	index(Request	$request)

				{

								$allInput	=	$request->all();

				}

You	can	also	use	the	request()	global	helper,	which	allows	you	to	call	methods	on	it	(e.g.,
request()->input())	and	also	allows	you	to	call	it	on	its	own	to	get	an	instance	of	$request:

$request	=	request();

$allInput	=	request()->all();

And	you	can	also	use	the	app()	global	method	to	get	an	instance	of	Request.	You	can	pass
either	the	fully	qualified	class	name	or	the	shortcut,	request:

$request	=	app(Illuminate\Http\Request::class);

$request	=	app('request');

Getting	Basic	Information	About	a	Request
Now	that	we	know	how	to	get	an	instance	of	Request,	what	can	we	do	with	it?	The	primary
purpose	of	the	Request	object	is	to	represent	the	current	HTTP	request,	so	the	primary
functionality	the	Request	class	offers	is	to	make	it	easy	to	get	useful	information	about	the
current	request.

I’ve	categorized	the	methods	described	here,	but	note	that	there’s	certainly	overlap	between
the	categories,	and	the	categories	are	a	bit	arbitrary	—	for	example,	query	parameters	could
just	as	easily	be	in	“User	and	request	state”	as	they	are	in	“Basic	user	input.”	Hopefully	these
categories	will	make	it	easy	for	you	to	learn,	and	then	you	can	throw	away	the	categories.

Also,	be	aware	that	there	are	many	more	methods	available	on	the	Request	object;	these	are
just	the	most	commonly	used	methods.

Basic	user	input
The	basic	user	input	methods	make	it	simple	to	get	information	that	the	users	themselves
explicitly	provide	—	likely	through	submitting	a	form	or	an	Ajax	component.	When	I
reference	“user-provided	input”	here,	I’m	talking	about	input	from	query	strings	(GET),	form
submissions	(POST),	or	JSON:

all()	returns	an	array	of	all	user-provided	input.

input(fieldName)	returns	the	value	of	a	single	user-provided	input	field.

only(fieldName|[array,of,field,names])	returns	an	array	of	all	user-provided	input
for	the	specified	field	name(s).

except(fieldName|[array,of,field,names])	returns	an	array	of	all	user-provided
input	except	for	the	specified	field	name(s).

exists(fieldName)	returns	a	boolean	of	whether	or	not	the	field	exists	in	the	input.

has(fieldName)	returns	a	boolean	of	whether	the	field	exists	in	the	input	and	is	not
empty	(has	a	value).

json()	returns	a	ParameterBag	if	the	page	had	JSON	sent	to	it.

json(keyName)	returns	the	value	of	the	given	key	from	JSON	sent	to	the	page.

PARAMETERBAG

Sometimes	in	Laravel	you’ll	run	into	a	ParameterBag.	This	class	is	sort	of	like	an	associative	array.	You	can	get	a
particular	key	using	get():

echo	$bag->get('name');

You	can	also	use	has()	to	check	for	the	existence	of	a	key,	all()	to	get	an	array	of	all	keys	and	values,	count()	to
count	the	number	of	items,	and	keys()	to	get	an	array	of	just	the	keys.

Example	10-3	gives	a	few	quick	examples	of	how	to	use	the	user-provided	information
methods	from	a	request.

Example	10-3.	Getting	basic	user-provided	information	from	the	request
//	form

<form	method="POST"	action="/form">

				{{	csrf_field()	}}

				<input	name="name">	Name

				<input	type="submit">

</form>

//	route	receiving	the	form

Route::post('form',	function	(Request	$request)	{

				echo	'name	is	'	.	$request->input('name');

				echo	'all	input	is	'	.	print_r($request->all());

				echo	'user	provided	email	address:	'	.	$request->has('email')	?	'true'	:	'false';

});

User	and	request	state
The	user	and	request	state	methods	include	input	that	wasn’t	explicitly	provided	by	the	user
through	a	form:

method()	returns	the	method	(GET,	POST,	PATCH,	etc.)	used	to	access	this	route.

path()	returns	the	path	(without	the	domain)	used	to	access	this	page;	e.g.,	for
http://www.myapp.com/abc/def	it	would	return	abc/def.

url()	returns	the	URL	(with	the	domain)	used	to	access	this	page;	e.g.,	for
http://www.myapp.com/abc	it	would	return	http://www.myapp.com/abc.

is()	returns	a	boolean	of	whether	or	not	the	current	page	request	fuzzy-matches	a
provided	string	(e.g.,	/a/b/c	would	be	matched	by	$request->is('*b*'),	where	*	stands
for	any	characters).	It	uses	a	custom	regex	parser	found	in	Str::is.

ip()	returns	the	user ’s	IP	address.

header()	returns	an	array	of	headers	(e.g.,	['accept-language'	=>	['en-
US,en;q=0.8']]),	or,	if	passed	a	header	name	as	a	parameter,	returns	just	that	header.

server()	returns	an	array	of	the	variables	traditionally	stored	in	$_SERVER	(e.g.,
REMOTE_ADDR),	or,	if	passed	a	$_SERVER	variable	name,	returns	just	that	value.

secure()	returns	a	boolean	of	whether	this	page	was	loaded	using	HTTPS.

pjax()	returns	a	boolean	of	whether	this	page	request	was	loaded	using	Pjax.

wantsJson()	returns	a	boolean	of	whether	this	request	has	any	/json	content	types	in	its
Accept	headers.

isJson()	returns	a	boolean	of	whether	this	page	request	has	any	/json	content	types	in
its	Content-Type	header.

accepts()	returns	a	boolean	of	whether	this	page	request	accepts	a	given	content	type.

Files
So	far,	all	of	the	input	we’ve	covered	is	either	explicit	(retrieved	by	methods	like	all(),
input(),	etc.)	or	defined	by	the	browser	or	referring	site	(retrieved	by	methods	like	pjax()).
File	inputs	are	similar	to	explicit	user	input,	but	they’re	handled	much	differently:

file()	returns	an	array	of	all	uploaded	files,	or,	if	a	key	is	passed	(the	file	upload	field
name),	returns	just	the	one	file.

hasFile()	returns	a	boolean	of	whether	a	file	was	uploaded	at	the	specified	key.

Every	file	that’s	uploaded	will	be	an	instance	of
Symfony\Component\HttpFoundation\File\UploadedFile,	which	provides	a	suite	of	tools	for
validating,	processing,	and	storing	uploaded	files.

Take	a	look	at	Chapter	14	for	more	examples	of	how	to	handle	uploaded	files.

Persistence
The	request	can	also	provide	functionality	for	interacting	with	the	session.	Most	session
functionality	lives	elsewhere,	but	there	are	a	few	methods	that	are	particularly	relevant	to	the
current	page	request:

flash()	flashes	the	current	request’s	user	input	to	the	session	to	be	retrieved	later.

flashOnly()	flashes	the	current	request’s	user	input	for	any	keys	in	the	provided	array.

flashExcept()	flashes	the	current	requests’s	user	input,	except	for	any	keys	in	the
provided	array.

old()	returns	an	array	of	all	previously	flashed	user	input,	or,	if	passed	a	key,	returns	the
value	for	that	key	if	it	was	previously	flashed.

flush()	wipes	all	previously	flashed	user	input.

cookie()	retrieves	all	cookies	from	the	request,	or,	if	a	key	is	provided,	retrieves	just
that	cookie.

hasCookie()	returns	a	boolean	of	whether	the	request	has	a	cookie	for	the	given	key.

The	flash*()	and	old()	methods	are	used	for	storing	user	input	and	retrieving	it	later,	often
after	the	input	is	validated	and	rejected.

The	Response	Object
Similar	to	the	Request	object,	there’s	an	Illuminate	Response	object	that	represents	the
response	your	application	is	sending	to	the	end	user,	complete	with	headers,	cookies,	content,
and	anything	else	used	for	sending	the	end	user ’s	browser	instructions	on	rendering	a	page.

Just	like	Request,	the	Illuminate\Http\Response	object	extends	a	Symfony	class:
Symfony\Component\HttpFoundation\Response.	This	is	a	base	class	with	a	series	of
properties	and	methods	that	make	it	possible	to	represent	and	render	a	response;	Illuminate’s
Response	class	decorates	it	with	a	few	helpful	shortcuts.

Using	and	Creating	Response	Objects	in	Controllers
Before	we	talk	about	how	you	can	customize	your	response	objects,	let’s	step	back	and	see
how	we	most	commonly	work	with	response	objects.

In	the	end,	any	response	object	returned	from	a	route	definition	will	be	converted	into	an
HTTP	response.	It	may	define	specific	headers	or	specific	content,	set	cookies,	or	whatever
else,	but	eventually	it	will	be	converted	into	a	response	your	users’	browsers	can	parse.

Let’s	take	a	look	at	the	simplest	possible	response,	in	Example	10-4.

Example	10-4.	Simplest	possible	HTTP	response
Route::get('route',	function	()	{

				return	new	Illuminate\Http\Response('Hello!');

});

//	Same,	using	global	function:

Route::get('route',	function	()	{

				return	response('Hello!');

});

We	create	a	response,	give	it	some	core	data,	and	then	return	it.	We	can	also	customize	the
HTTP	status,	headers,	cookies,	and	more,	like	in	Example	10-5.

Example	10-5.	Simple	HTTP	response	with	customized	status	and	headers
Route::get('route',	function	()	{

				return	response('Error!',	400)

								->header('X-Header-Name',	'header-value')

								->cookie('cookie-name',	'cookie-value');

});

Setting	headers
We	define	a	header	on	a	response	by	using	the	header()	fluent	method,	like	in	Example	10-5.
The	first	parameter	is	the	header	name	and	the	second	is	the	header	value.

Adding	cookies
We	can	also	set	cookies	directly	on	the	response	object	if	we’d	like.	We’ll	cover	Laravel’s
cookie	handling	a	bit	more	in	Chapter	14,	but	take	a	look	at	Example	10-6	for	a	simple	use
case	for	attaching	cookies	to	a	response.

Example	10-6.	Attaching	a	cookie	to	a	response
				return	response($content)

								->cookie('signup_dismissed',	true);

Specialized	Response	Types
There	are	also	a	few	special	response	types	for	views,	downloads,	files,	and	JSON.	Each	is	a
predefined	macro	that	makes	it	easy	to	reuse	particular	templates	for	headers	or	content
structure.

View	responses
In	Chapter	4,	I	used	the	global	view()	helper	to	show	how	to	return	a	template	—	for
example,	view(view.name.here)	or	something	similar.	But	if	you	need	to	customize	headers,
HTTP	status,	or	anything	else	when	returning	a	view,	you	can	use	the	view()	response	type	as
shown	in	Example	10-7.

Example	10-7.	Using	the	view()	response	type
Route::get('/',	function	(XmlGetterService	$xml)	{

				$data	=	$xml->get();

				return	response()

								->view('xml-structure',	$data)

								->header('Content-Type',	'text/xml');

});

Download	responses
Sometimes	you	want	your	application	to	force	the	user ’s	browser	to	download	a	file,	whether
you’re	creating	the	file	in	Laravel	or	serving	it	from	a	database	or	a	protected	location.	The
download()	response	type	makes	this	simple.

The	required	first	parameter	is	the	path	for	the	file	you	want	the	browser	to	download.	If	it’s	a
generated	file,	you’ll	need	to	save	it	somewhere	temporarily.

The	optional	second	parameter	is	the	filename	for	the	downloaded	file	(e.g.,	export.csv).	If
you	don’t	pass	a	string	here,	it	will	be	automatically	generated.	The	optional	third	parameter
allows	you	to	pass	an	array	of	headers.	Example	10-8	illustrates	the	use	of	the	download()
response	type.

Example	10-8.	Using	the	download()	response	type
public	function	export()

{

				return	response()

								->download('file.csv',	'export.csv',	['header'	=>	'value']);

}

public	function	otherExport()

{

				return	response()->download('file.pdf');

}

File	responses
The	file	response	is	similar	to	the	download	response,	except	it	allows	the	browser	to	display
the	file	instead	of	forcing	a	download.	This	is	most	common	with	images	and	PDFs.

The	required	first	parameter	is	the	filename,	and	the	optional	second	parameter	can	be	an

array	of	headers	(see	Example	10-9).

Example	10-9.	Using	the	file()	response	type
public	function	invoice($id)

{

				return	response()->file("./invoices/{$id}.pdf",	['header'	=>	'value']);

}

JSON	responses
JSON	responses	are	so	common	that,	even	though	they’re	not	really	particularly	complex	to
program,	there’s	a	custom	response	for	them	as	well.

JSON	responses	convert	the	passed	data	to	JSON	(with	json_encode())	and	set	the	Content-
Type	to	application/json.	You	can	also	optionally	use	the	setCallback()	method	to	create	a
JSONP	response	instead	of	JSON,	as	seen	in	Example	10-10.

Example	10-10.	Using	the	json()	response	type
public	function	contacts()

{

				return	response()->json(Contact::all());

}

public	function	jsonpContacts(Request	$request)

{

				return	response()

								->json(Contact::all())

								->setCallback($request->input('callback'));

}

public	function	nonEloquentContacts()

{

				return	response()->json(['Tom',	'Jerry']);

}

Redirect	responses
Redirects	aren’t	commonly	called	on	the	response()	helper,	so	they’re	a	bit	different	from
the	other	custom	response	types	we	discussed	already,	but	they’re	still	just	a	different	sort	of
response.	Redirects,	returned	from	a	Laravel	route,	send	the	user	a	redirect	(often	a	301)	to
another	page	or	back	to	the	previous	page.

You	technically	can	call	a	redirect	from	response(),	as	in	return	response()-
>redirectTo('/').	But	more	commonly	you’ll	use	the	redirect-specific	global	helpers.

There	is	a	global	redirect()	function	that	can	be	used	to	create	redirect	responses,	and	a
global	back()	function	that	is	a	shortcut	to	redirect()->back().

Just	like	most	global	helpers,	the	redirect()	global	function	can	either	be	passed	parameters
or	can	be	used	to	get	an	instance	of	its	class	that	you	then	chain	method	calls	onto.	If	you	don’t
chain,	but	just	pass	parameters,	redirect()	performs	the	same	as	redirect()->to();	it	takes
a	string	and	redirects	to	that	string	URL.	Example	10-11	shows	some	examples	of	its	use.

Example	10-11.	Examples	of	using	the	redirect()	global	helper
return	redirect('account/payment');

return	redirect()->to('account/payment');

return	redirect()->route('account.payment');

return	redirect()->action('AccountController@showPayment');

//	If	named	route	or	controller	needs	parameters:

return	redirect()->route('contacts.edit',	['id'	=>	15]);

return	redirect()->action('ContactsController@edit',	['id'	=>	15]);

You	can	also	redirect	“back”	to	the	previous	page,	which	is	especially	useful	when	handling
and	validating	user	input.	Example	10-12	shows	a	common	pattern	in	validation	contexts.

Example	10-12.	Redirect	back	with	input
public	function	store()

{

				//	If	validation	fails...

				return	back()->withInput();

}

Finally,	you	can	redirect	and	flash	data	to	the	session	at	the	same	time.	This	is	common	with
error	and	success	messages,	like	in	Example	10-13.

Example	10-13.	Redirect	with	flashed	data
Route::post('contacts',	function	()	{

				//	store	the	contact...

				return	redirect('dashboard')->with('message',	'Contact	created!');

});

Route::get('dashboard',	function	()	{

				//	Get	the	flashed	data	from	session--usually	handled	in	Blade	template

				echo	session('message');

});

Custom	response	macros
You	can	also	create	your	own	custom	response	types	using	“macros”.	This	allows	you	to
define	a	series	of	modifications	to	make	to	the	response	and	its	provided	content.

Let’s	re-create	the	json()	custom	response	type,	just	to	see	how	it	works.	As	always,	you
should	probably	create	a	custom	service	provider	for	these	sorts	of	bindings,	but	for	now
we’ll	just	put	it	in	AppServiceProvider,	as	seen	in	Example	10-14.

Example	10-14.	Creating	a	custom	response	macro
...

class	AppServiceProvider

{

				public	function	boot()

				{

								Response::macro('myJson',	function	($content)	{

												return	response(json_encode($content))

																->headers(['Content-Type'	=>	'application/json']);

								});

				}

Then,	we	can	use	it	just	like	we	would	use	the	predefined	json	macro:

return	response()->myJson(['name'	=>	'Sangeetha']);

This	will	return	a	response	with	the	body	of	that	array	encoded	for	JSON,	with	the	JSON-

appropriate	Content-Type	header.

Laravel	and	Middleware
Take	a	look	back	at	Figure	10-1,	at	the	start	of	this	chapter.

We’ve	covered	the	requests	and	responses,	but	we	haven’t	actually	looked	into	what
middleware	is.	You	may	already	be	familiar	with	middleware;	it’s	not	unique	to	Laravel,	but
rather	a	widely	used	architecture	pattern.

An	Introduction	to	Middleware
The	idea	of	middleware	is	that	there	is	a	series	of	layers	wrapping	around	your	application,
like	a	multilayer	cake	or	an	onion.	Just	as	shown	in	Example	10-1,	every	request	passes
through	every	middleware	layer	on	its	way	into	the	application,	and	then	the	resulting
response	passes	back	through	the	middleware	layers	on	its	way	out	to	the	end	user.

Middleware	is	most	often	considered	separate	from	your	application	logic,	and	usually	is
constructed	in	a	way	that	should	theoretically	be	applicable	to	any	application,	not	just	the	one
you’re	working	on	at	the	moment.

Middleware	can	inspect	a	request	and	decorate	it,	or	reject	it,	based	on	what	it	finds.	That
means	middleware	is	great	for	something	like	rate	limiting:	it	can	inspect	the	IP	address,
check	how	many	times	it’s	accessed	this	resource	in	the	last	minute,	and	send	back	a	429	(Too
Many	Requests)	status	if	a	threshold	is	passed.

Because	middleware	also	gets	access	to	the	response	on	its	way	out	of	the	application,	it’s
great	for	decorating	responses.	For	example,	Laravel	uses	a	middleware	to	add	all	of	the
queued	cookies	from	a	given	request/response	cycle	to	the	response	right	before	it	is	sent	to
the	end	user.

But	some	of	the	most	powerful	uses	of	middleware	come	from	the	fact	that	it	can	be	nearly
the	first	and	the	last	thing	to	interact	with	the	request/response	cycle.	That	makes	it	perfect	for
something	like	enabling	sessions	—	PHP	needs	you	to	open	the	session	very	early	and	close	it
very	late,	and	middleware	is	great	for	this.

Creating	Custom	Middleware
Let’s	imagine	we	want	to	have	a	middleware	that	rejects	every	request	that	uses	the	DELETE
HTTP	method,	and	also	sends	a	cookie	back	for	every	request.

There’s	an	Artisan	command	to	create	custom	middleware.	Let’s	try	it	out:

php	artisan	make:middleware	BanDeleteMethod

You	can	now	open	up	the	file	at	app/Http/Middleware/BanDeleteMethod.php.	The	default
contents	are	shown	in	Example	10-15.

Example	10-15.	Default	middleware	contents
...

class	BanDeleteMethod

{

				public	function	handle($request,	Closure	$next)

				{

								return	$next($request);

				}

}

How	this	handle()	method	represents	the	processing	of	both	the	incoming	request	and	the
outgoing	response	is	the	most	difficult	thing	to	understand	about	middleware,	so	let’s	walk
through	it.

Understanding	middleware’s	handle()	method
First,	remember	that	middleware	are	layered	one	on	top	of	another,	and	then	finally	on	top	of
the	app.	The	first	middleware	that’s	registered	gets	first	access	to	a	request	when	it	comes	in,
then	that	request	is	passed	to	every	other	middleware	in	turn,	then	to	the	app;	then	the	resulting
response	is	passed	outward	through	the	middleware,	and	finally	this	first	middleware	gets	last
access	to	the	response	when	it	goes	out.

Let’s	imagine	we’ve	registered	BanDeleteMethod	as	the	first	middleware	to	run.	That	means
the	$request	coming	into	it	is	the	raw	request,	unadulterated	by	any	other	middleware.	Now
what?

Passing	that	request	to	$next()	means	handing	it	off	to	the	rest	of	the	middleware.	The
$next()	closure	just	takes	that	$request	and	passes	it	to	the	handle()	method	of	the	next
middleware	in	the	stack.	It	then	gets	passed	on	down	the	line	until	there	are	no	more
middleware	to	hand	it	to,	and	it	finally	ends	up	at	the	application.

Next,	how	does	the	response	come	out?	This	is	where	it	might	be	hard	to	follow.	The
application	returns	a	response,	which	is	passed	back	up	the	chain	of	middleware	—	because
each	middleware	returns	its	response.	So,	within	that	same	handle()	method,	the	middleware
can	decorate	a	$request	and	pass	it	to	the	$next()	closure,	and	can	then	choose	to	do
something	with	the	output	it	receives	before	finally	returning	that	output	to	the	end	user.	Let’s
look	at	some	pseudocode	to	make	this	clearer	(Example	10-16).

Example	10-16.	Pseudocode	explaining	the	middleware	call	process
...

class	BanDeleteMethod

{

				public	function	handle($request,	Closure	$next)

				{

								//	At	this	point,	$request	is	the	raw	request	from	the	user.

								//	Let's	do	something	with	it,	just	for	fun.

								if	($request->ip()	===	'192.168.1.1')	{

												return	response('BANNED	IP	ADDRESS!',	403);

								}

								//	Now	we've	decided	to	accept	it.	Let's	pass	it	on	to	the	next

								//	middleware	in	the	stack.	We	pass	it	to	$next(),	and	what	is

								//	returned	is	the	response	after	the	$request	has	been	passed

								//	down	the	stack	of	middleware	to	the	application	and	the

								//	application's	response	has	been	passed	back	up	the	stack.

								$response	=	$next($request);

								//	At	this	point,	we	can	once	again	interact	with	the	response

								//	just	before	it	is	returned	to	the	user

								$response->cookie('visited-our-site',	true);

								//	Finally,	we	can	release	this	response	to	the	end	user

								return	$response;

				}

}

Finally,	let’s	make	the	middleware	do	what	we	actually	promised	(Example	10-17).

Example	10-17.	Sample	middleware	banning	the	delete	method
...

class	BanDeleteMethod

{

				public	function	handle($request,	Closure	$next)

				{

								//	Test	for	the	DELETE	method

								if	($request->method()	===	'DELETE')	{

												return	response(

																"Get	out	of	here	with	that	delete	method",

																405

);

								}

								$response	=	$next($request);

								//	Assign	cookie

								$response->cookie('visited-our-site',	true);

								//	Return	response

								return	$response;

				}

}

Binding	Middleware
We’re	not	quite	done	yet.	We	need	to	register	this	middleware	in	one	of	two	ways:	globally	or
for	specific	routes.

Global	middleware	are	applied	to	every	route;	route	middleware	are	applied	on	a	route-by-
route	basis.

Binding	global	middleware
Both	bindings	happen	in	app/Http/Kernel.php.	To	add	a	middleware	as	global,	add	its	class
name	to	the	$middleware	property,	as	in	Example	10-18.

Example	10-18.	Binding	global	middleware
//	app/Http/Kernel.php

protected	$middleware	=	[

				\Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,

				\App\Http\Middleware\BanDeleteMethod::class,

];

Binding	route	middleware
Middleware	intended	for	specific	routes	can	be	added	as	a	route	middleware	or	as	part	of	a
middleware	group.	Let’s	start	with	the	former.

Route	middleware	are	added	to	the	$routeMiddleware	array	in	app/Http/Kernel.php.	It’s
similar	to	adding	them	to	$middleware,	except	we	have	to	give	one	a	key	that	will	be	used
when	applying	this	middleware	to	a	particular	route,	as	seen	in	Example	10-19.

Example	10-19.	Binding	route	middleware
//	app/Http/Kernel.php

protected	$routeMiddleware	=	[

				'auth'	=>	\App\Http\Middleware\Authenticate::class,

				...

				'nodelete'	=>	\App\Http\Middleware\BanDeleteMethod::class,

];

We	can	now	use	this	middleware	in	our	route	definitions,	like	in	Example	10-20.

Example	10-20.	Applying	route	middleware	in	route	definitions
//	Doesn't	make	much	sense	for	our	current	example...

Route::get('contacts',	[

				'middleware'	=>	'nodelete',

				'uses'	=>	'ContactsController@index'

]);

//	Makes	more	sense	for	our	current	example...

Route::group(['prefix'	=>	'api',	'middleware'	=>	'nodelete',	function	()	{

				//	All	routes	related	to	an	API

}]);

Using	middleware	groups
Laravel	5.2	introduced	the	concept	of	middleware	groups.	They’re	essentially	pre-packaged
bundles	of	middleware	that	make	sense	to	be	together	in	specific	contexts.

MIDDLEWARE	GROUPS	IN	5.2
The	default	routes	file	in	earlier	releases	of	5.2,	routes.php,	had	three	distinct	sections:	the	root	route	(/)	wasn’t
under	any	middleware	group,	and	then	there	was	a	web	middleware	group	and	an	api	middleware	group.	It	was	a
bit	confusing	for	new	users,	and	that	meant	the	root	route	didn’t	have	access	to	the	session	or	anything	else	that’s
kicked	off	in	the	middleware.

In	later	versions	of	5.2	everything’s	simplified:	every	route	in	routes.php	is	in	the	web	middleware	group.	In	5.3,
you	get	a	routes/web.php	file	for	web	routes	and	a	routes/api.php	file	for	API	routes.	If	you	want	to	add	routes
in	other	groups,	read	on.

Out	of	the	box	there	are	two	groups:	web	and	api.	web	has	all	the	middleware	that	will	be
useful	on	almost	every	Laravel	page	request,	including	middleware	for	cookies,	sessions,
CSRF	protection,	and	more.	api	has	none	of	those	—	it	has	a	throttle	middleware	and	a	route
model	binding	middleware,	and	that’s	it.	These	are	all	defined	in	app/Http/Kernel.php.

You	can	apply	middleware	groups	to	routes	just	like	you	apply	route	middleware	to	routes,
with	the	middleware()	fluent	method:

Route::get('/',	'HomeController@index')->middleware('web');

You	can	also	create	your	own	middleware	groups	and	add	and	remove	route	middleware	to
and	from	preexisting	middleware	groups.	It	works	just	like	adding	route	middleware
normally,	but	you’re	instead	adding	them	to	keyed	groups	in	the	$middlewareGroups	array.

You	might	be	wondering	how	these	middleware	groups	match	up	with	the	two	default	routes
files.	Unsurprisingly,	the	routes/web.php	file	is	wrapped	with	the	web	middleware	group,	and
the	routes/api.php	file	is	wrapped	with	the	api	middleware	group.

The	routes/*	files	are	loaded	in	the	RouteServiceProvider.	Take	a	look	at	the	map()	method
there	(Example	10-21)	and	you’ll	find	a	mapWebRoutes()	and	a	mapApiRoutes()	method,	each
of	which	loads	its	respective	files	already	wrapped	in	the	appropriate	middleware	group.

Example	10-21.	Default	route	service	provider	in	Laravel	5.3
//	App\Providers\RouteServiceProvider

				public	function	map()

				{

								$this->mapApiRoutes();

								$this->mapWebRoutes();

				}

				protected	function	mapApiRoutes()

				{

								Route::group([

												'middleware'	=>	'api',

												'namespace'	=>	$this->namespace,

												'prefix'	=>	'api',

],	function	($router)	{

												require	base_path('routes/api.php');

								});

				}

				protected	function	mapWebRoutes()

				{

								Route::group([

												'middleware'	=>	'web',

												'namespace'	=>	$this->namespace,

],	function	($router)	{

												require	base_path('routes/web.php');

								});

				}

As	you	can	see	in	Example	10-21,	we’re	using	the	router	to	load	a	route	group	under	the
default	namespace	(App\Http\Controllers)	and	with	the	web	middleware	group,	and	another
under	the	api	middleware	group.

Passing	Parameters	to	Middleware
It’s	not	common,	but	there	are	times	when	you	need	to	pass	parameters	to	a	route	middleware.
For	example,	you	might	have	an	authentication	middleware	that	will	act	differently	depending
on	whether	you’re	guarding	for	the	member	user	type	or	the	owner	user	type:

Route::get('company',	function	()	{

				return	view('company.admin');

})->middleware('auth:owner');

To	make	this	work,	you’ll	need	to	add	one	or	more	parameters	to	the	middleware’s	handle()
method,	and	update	that	method’s	logic	accordingly:

public	function	handle($request,	$next,	$role)

{

				if	(auth()->check()	&&	auth()->user()->hasRole($role))	{

								return	$next($request);

				}

				return	redirect('login');

}

Note	that	you	can	also	add	more	than	one	parameter	to	the	handle()	method,	and	pass
multiple	parameters	to	the	route	definition	by	separating	them	with	commas:

Route::get('company',	function	()	{

				return	view('company.admin');

})->middleware('auth:owner,view');

FORM	REQUEST	OBJECTS

In	this	chapter	we	covered	how	to	inject	an	Illuminate	Request	object,	which	is	the	base	—	and	most	common	—	request
object.

However,	you	can	also	extend	the	Request	object	and	inject	that	instead.	You’ll	learn	more	about	how	to	bind	and	inject
custom	classes	in	Chapter	11,	but	there’s	one	special	type,	called	the	form	request,	that	has	its	own	set	of	behaviors.

See	“Form	Requests”	to	learn	more	about	creating	and	using	form	requests.

Testing
Outside	of	the	context	of	you	as	a	developer	using	requests,	responses,	and	middleware	in
your	own	testing,	Laravel	itself	actually	uses	each	quite	a	bit.

When	you’re	doing	application	testing	—	calls	like	$this->visit('/'),	clicks,	and	whatever
else	—	you’re	instructing	Laravel’s	application	testing	framework	to	generate	request	objects
that	represent	the	interactions	that	you’re	describing.	Then	those	request	objects	are	passed	to
your	application	as	if	it	were	an	actual	visit.	That’s	why	the	application	tests	are	so	accurate:
your	application	doesn’t	actually	“know”	that	it’s	not	a	real	user	that’s	interacting	with	it.

In	this	context,	many	of	the	assertions	you’re	making	—	say,	assertResponseOk()	—	are
assertions	against	the	response	object	generated	by	the	application	testing	framework.	The
assertResponseOk()	method	just	looks	at	the	response	object	and	asserts	that	its	isOk()
method	returns	true	—	which	is	just	checking	that	its	status	code	is	200.	In	the	end,	everything
in	application	testing	is	acting	as	if	this	were	a	real	page	request.

Find	yourself	in	a	context	where	you	need	a	request	to	work	with	in	your	tests?	You	can
always	pull	one	from	the	container	with	$request	=	request().	Or	you	could	create	your
own	—	the	constructor	parameters	for	the	Request	class,	all	optional,	are	as	follows:

$request	=	new	Illuminate\Http\Request(

				$query,						//	GET	array

				$request,				//	POST	array

				$attributes,	//	"attributes"	array;	empty	is	fine

				$cookies,				//	cookies	array

				$files,						//	files	array

				$server,					//	servers	array

				$content					//	raw	body	data

);

If	you’re	really	interested	in	an	example,	check	out	the	method	Symfony	uses	to	create	a	new
Request	from	the	globals	PHP	provides:
Symfony\Component\HttpFoundation\Request@createFromGlobals().

Responses	are	even	simpler	to	create	manually,	if	you	need	to.	Here	are	the	(optional)
parameters:

$response	=	new	Illuminate\Http\Response(

				$content,	//	response	content

				$status,		//	HTTP	status,	default	200

				$headers		//	array	headers	array

);

Finally,	if	you	need	to	disable	your	middleware	during	an	application	test,	import	the
WithoutMiddleware	trait	into	that	test.

TL;DR
Every	request	coming	into	a	Laravel	application	is	converted	into	an	Illuminate	Request
object,	which	then	passes	through	all	middleware,	and	is	processed	by	the	application.	The
application	generates	a	response	object,	which	is	then	passed	back	through	all	of	the
middleware	(in	reverse	order)	and	returned	to	the	end	user.

Request	and	response	objects	are	responsible	for	encapsulating	and	representing	every
relevant	piece	of	information	about	the	incoming	user	request	and	the	outgoing	server
response.

Service	providers	collect	together	related	behavior	for	binding	and	registering	classes	for
use	by	the	application.

Middleware	wrap	the	application	and	can	reject	or	decorate	any	request	and	response.

Chapter	11.	The	Container

Laravel’s	service	container,	or	dependency	injection	container,	sits	at	the	core	of	almost	every
other	feature.	The	container	is	a	simple	tool	you	can	use	to	bind	and	resolve	concrete
instances	of	classes	and	interfaces,	and	at	the	same	time	it’s	a	powerful	and	nuanced	manager
of	a	network	of	interrelated	dependencies.	In	this	chapter,	we’ll	learn	more	about	what	it	is,
how	it	works,	and	how	you	can	use	it.

NAMING	AND	THE	CONTAINER
You’ll	notice	in	this	book,	in	the	documentation,	and	in	other	educational	sources	that	there	are	quite	a	few	names
folks	use	for	the	container.	These	include:

Application	container

IoC	(inversion	of	control)	container

Service	container

DI	(dependency	injection)	container

All	are	useful	and	valid,	but	just	know	they’re	all	talking	about	the	same	thing.	They’re	all	referring	to	the
service	container.

A	Quick	Introduction	to	Dependency	Injection
Dependency	injection	means	that,	rather	than	being	instantiated	(“newed	up”)	within	a	class,
each	class’s	dependencies	will	be	injected	in	from	the	outside.	This	most	commonly	occurs
with	constructor	injection,	which	means	an	object’s	dependencies	are	injected	when	it’s
created.	But	there’s	also	setter	injection,	where	the	class	exposes	a	method	specifically	for
injecting	a	given	dependency,	and	method	injection,	where	one	or	more	methods	expect	their
dependencies	to	be	injected	when	they’re	called.

Take	a	look	at	Example	11-1	for	a	quick	example	of	constructor	injection,	the	most	common
type	of	dependency	injection.

Example	11-1.	Basic	dependency	injection
<?php

class	UserMailer

{

				protected	$mailer;

				public	function	__construct(Mailer	$mailer)

				{

								$this->mailer	=	$mailer;

				}

				public	function	welcome($user)

				{

								return	$this->mailer->mail($user->email,	'Welcome!');

				}

}

As	you	can	see,	this	UserMailer	class	expects	an	object	of	type	Mailer	to	be	injected	when	it’s
instantiated,	and	its	methods	then	refer	to	that	instance.

The	primary	benefits	of	dependency	injection	are	that	it	gives	us	the	freedom	to	change	what
we’re	injecting,	mock	dependencies	for	testing,	and	instantiate	shared	dependencies	just	once
for	shared	use.

INVERSION	OF	CONTROL

You	may	have	heard	the	phrase	“inversion	of	control”	used	in	conjunction	with	“dependency	injection,”	and	sometimes
Laravel’s	container	is	called	the	IoC	container.

The	two	concepts	are	very	similar.	Inversion	of	control	references	the	idea	that,	in	traditional	programming,	the	lowest-
level	code	—	specific	classes,	instances,	and	procedural	code	—	“controls”	which	instance	of	a	particular	pattern	or
interface	to	use.	For	example,	if	you’re	instantiating	your	mailer	in	each	class	that	needs	it,	each	class	gets	to	decide
whether	to	use	Mailgun	or	Mandrill	or	Sendgrid.

The	idea	of	inversion	of	control	refers	to	flipping	that	“control”	to	live	at	the	opposite	end	of	your	application.	Now	the
definition	of	which	mailer	to	use	lives	at	the	highest,	most	abstract	level	of	your	application,	often	in	configuration.	Every
instance,	every	piece	of	low-level	code,	looks	up	to	the	high-level	configuration	to	essentially	“ask”:	“Can	you	give	me
a	mailer?”	They	don’t	“know”	which	mailer	they’re	getting,	just	that	they’re	getting	one.

Dependency	injection	and	especially	DI	containers	provide	a	great	opportunity	for	inversion	of	control,	because	you	can
define	once	which	concrete	instance	of	the	Mailer	interface,	for	example,	to	provide	when	injecting	mailers	into	any	class
that	needs	them.

Dependency	Injection	and	Laravel
As	we	saw	in	Example	11-1,	the	most	common	pattern	for	dependency	injection	is	constructor
injection,	or	injecting	the	dependencies	of	an	object	when	it’s	instantiated	(“constructed”).

Let’s	take	our	UserMailer	class	from	Example	11-1.	Example	11-2	shows	what	it	might	look
like	to	create	and	use	an	instance	of	it.

Example	11-2.	Simple	manual	dependency	injection
$mailer	=	new	MailgunMailer($mailgunKey,	$mailgunSecret,	$mailgunOptions);

$userMailer	=	new	UserMailer($mailer);

$userMailer->welcome($user);

Now	let’s	imagine	we	want	our	UserMailer	class	to	be	able	to	log	messages,	as	well	as
sending	a	notification	to	a	Slack	channel	every	time	it	sends	a	message.	Example	11-3	shows
what	this	would	look	like.	As	you	can	see,	it	would	start	to	get	pretty	unwieldy	if	we	had	to	do
all	this	work	every	time	we	wanted	to	create	a	new	instance	—	especially	when	you	consider
that	we’ll	have	to	get	all	these	parameters	from	somewhere.

Example	11-3.	More	complex	manual	dependency	injection
$mailer	=	new	MailgunMailer($mailgunKey,	$mailgunSecret,	$mailgunOptions);

$logger	=	new	Logger($logPath,	$minimumLogLevel);

$slack	=	new	Slack($slackKey,	$slackSecret,	$channelName,	$channelIcon);

$userMailer	=	new	UserMailer($mailer,	$logger,	$slack);

$userMailer->welcome($user);

Imagine	having	to	write	that	code	every	time	you	wanted	a	UserMailer.	Dependency	injection
is	great,	but	this	is	a	mess.

The	app()	Global	Helper
Before	we	go	too	far	into	how	the	container	actually	works,	let’s	take	a	quick	look	at	the
simplest	way	to	get	an	object	out	of	the	container:	the	app()	helper.

Pass	any	string	to	that	helper,	whether	it’s	a	fully	qualified	class	name	(FQCN)	or	a	Laravel
shortcut	(we’ll	talk	about	those	more	in	a	second),	and	it’ll	return	an	instance	of	that	class:

$logger	=	app(Logger::class);

This	is	the	absolute	simplest	way	to	interact	with	the	container.	It	creates	an	instance	of	this
class	and	returns	it	for	you.	Nice	and	easy.

DIFFERENT	SYNTAXES	FOR 	MAKING	A	CONCRETE	INSTANCE

The	simplest	way	to	“make”	a	concrete	instance	is	to	use	the	global	helper	and	pass	the	class	or	interface	name	directly
to	the	helper,	using	app('FQCN').

However,	if	you	have	an	instance	of	the	container	—	whether	it	was	injected	somewhere,	or	if	you’re	in	a	service	provider
and	using	$this->app,	or	(a	lesser-known	trick)	if	you	get	one	by	just	running	$container	=	app()	—	there	are	a	few
ways	to	make	an	instance	from	there.

The	most	common	way	is	to	run	the	make()	method.	$app->make('FQCN')	works	well.	However,	you	may	also	see	other
developers	and	the	documentation	use	this	syntax	sometimes:	$app['FQCN'].	Don’t	worry.	That’s	doing	the	same	thing;	it’s
just	a	different	way	of	writing	it.

Creating	the	Logger	instance	as	shown	here	seems	simple	enough,	but	you	might’ve	noticed
that	our	$logger	class	in	Example	11-3	has	two	parameters:	$logPath	and	$minimumLogLevel.
How	does	the	container	know	what	to	pass	here?

Short	answer:	it	doesn’t.	You	can	use	the	app()	global	helper	to	create	an	instance	of	a	class
that	has	no	parameters	in	its	constructor,	but	at	that	point	you	could’ve	just	run	new	Logger
yourself.	The	container	shines	when	there’s	some	complexity	in	the	constructor,	and	that’s
when	we	need	to	look	at	how	exactly	the	container	can	figure	out	how	to	construct	classes
with	constructor	parameters.

How	the	Container	Is	Wired
Before	we	dig	further	into	the	Logger	class,	take	a	look	at	Example	11-4.

Example	11-4.	Laravel	autowiring
class	Bar

{

				public	function	__construct()	{}

}

class	Baz

{

				public	function	__construct()	{}

}

class	Foo

{

				public	function	__construct(Bar	$bar,	Baz	$baz)	{}

}

$foo	=	app(Foo::class);

This	looks	similar	to	our	mailer	example	in	Example	11-3.	What’s	different	is	that	these
dependencies	(Bar	and	Baz)	are	both	so	simple	that	the	container	can	resolve	them	without	any
further	information.	The	container	reads	the	typehints	in	the	constructor,	resolves	an	instance
of	each,	and	then	injects	them	into	the	new	Foo	instance	when	it’s	creating	it.	This	is	called
autowiring:	resolving	instances	based	on	type-hints	without	the	developer	needing	to
explicitly	bind	those	classes	in	the	container.

TYPEHINTS	IN	PHP
“Typehinting”	in	PHP	means	putting	the	name	of	a	class	or	interface	in	front	of	a	variable	in	a	method	signature:

public	function	__construct(Logger	$logger)	{}

This	typehint	is	telling	PHP	that	whatever	is	passed	into	the	method	must	be	of	type	Logger,	which	could	be	either
an	interface	or	a	class.

Autowiring	means	that,	if	a	class	has	not	been	explicitly	bound	to	the	container	(like	Foo,	Bar,
or	Baz	in	this	context)	but	the	container	can	figure	out	how	to	resolve	it	anyway,	the	container
will	resolve	it.	This	means	any	class	with	no	constructor	dependencies	(like	Bar	and	Baz)	and
any	class	with	constructor	dependencies	that	the	container	can	resolve	(like	Foo)	can	be
resolved	out	of	the	container.

That	leaves	us	only	needing	to	bind	classes	that	have	unresolvable	constructor	parameters	—
for	example,	our	$logger	class	in	Example	11-3,	which	has	parameters	related	to	our	log	path
and	log	level.

For	those,	we’ll	need	to	learn	how	to	explicitly	bind	something	to	the	container.

Binding	Classes	to	the	Container
Binding	a	class	to	Laravel’s	container	is	essentially	telling	the	container,	“If	a	developer	asks
for	an	instance	of	Logger,	here’s	the	code	to	run	in	order	to	instantiate	one	with	the	correct
parameters	and	dependencies	and	then	return	it	correctly.”

We’re	teaching	the	container	that,	when	someone	asks	for	this	particular	string	(which	is
usually	the	FQCN	of	a	class),	it	should	resolve	it	this	way.

Binding	to	a	Closure
So,	let’s	look	at	how	to	bind	to	the	container.	Note	that	the	appropriate	place	to	bind	to	the
container	is	in	a	service	provider ’s	register()	method	(see	Example	11-5).

Example	11-5.	Basic	container	binding
//	In	service	provider

public	function	register()

{

				$this->app->bind(Logger::class,	function	($app)	{

								return	new	Logger('\log\path\here',	'error');

				});

}

There	are	a	few	important	things	to	note	in	this	example.	First,	we’re	running	$this->app-
>bind().	$this->app	is	an	instance	of	the	container	that’s	always	available	on	every	service
provider.	The	container ’s	bind()	method	is	what	we	use	to	bind	to	the	container.

The	first	parameter	of	bind()	is	the	“key”	we’re	binding	to.	Here	we’ve	used	the	FQCN	of	the
class.	The	second	parameter	differs	depending	on	what	you’re	doing,	but	essentially	it	should
be	something	that	shows	the	container	what	to	do	to	resolve	an	instance	of	that	bound	key.

So,	in	this	example,	we’re	passing	a	closure.	And	now,	any	time	someone	runs
app(Logger::class),	they’ll	get	the	result	of	this	closure.	The	closure	is	passed	an	instance	of
the	container	itself	($app),	so	if	the	class	you’re	resolving	has	a	dependency	you	want
resolved	out	of	the	container,	you	can	use	it	in	your	definition:

$this->app->bind(UserMailer::class,	function	($app)	{

				return	new	UserMailer(

								$app->make(Mailer::class),

								$app->make(Logger::class),

								$app->make(Slack::class)

);

});

Note	that	every	time	you	ask	for	a	new	instance	of	your	class,	this	closure	will	be	run	again
and	the	new	output	returned.

Binding	to	Singletons,	Aliases,	and	Instances
If	you	want	the	output	of	the	binding	closure	to	be	cached	so	that	this	closure	isn’t	re-run
every	time	you	ask	for	an	instance,	that’s	the	Singleton	pattern,	and	you	can	run	$this->app-
>singleton()	to	do	that:

public	function	register()

{

				$this->app->singleton(Logger::class,	function	()	{

								return	new	Logger('\log\path\here',	'error');

				});

}

You	can	also	get	similar	behavior	if	you	already	have	an	instance	of	the	object	you	want	the
singleton	to	return:

public	function	register()

{

				$logger	=	new	Logger('\log\path\here',	'error');

				$this->app->instance(Logger::class,	$logger);

}

Finally,	if	you	want	to	alias	one	class	to	another,	bind	a	class	to	a	shortcut,	or	bind	a	shortcut
to	a	class,	you	can	just	pass	two	strings:

$this->bind(Logger::class,	FirstLogger::class);

//	or

$this->bind('log',	FirstLogger::class);

//	or

$this->bind(FirstLogger::class,	'log');

Note	that	these	shortcuts	are	common	in	Laravel’s	core;	it	provides	a	system	of	shortcuts	to
classes	that	provide	core	functionality,	using	easy-to-remember	keys	like	log.

Binding	a	Concrete	Instance	to	an	Interface
Just	like	we	can	bind	a	class	to	another	class,	or	a	class	to	a	shortcut,	we	can	also	bind	to	an
interface.	This	is	extremely	powerful,	because	we	can	now	typehint	interfaces	instead	of	class
names,	like	in	Example	11-6.

Example	11-6.	Typehinting	and	binding	to	an	interface
...

use	Interfaces\Mailer;

class	UserMailer

{

				protected	$mailer;

				public	function	__construct(Mailer	$mailer)

				{

								$this->mailer	=	$mailer;

				}

}

//	service	provider

public	function	register()

{

				$this->app->bind(\Interfaces\Mailer::class,	function	()	{

								return	new	MailgunMailer(...);

				});

}

You	can	now	typehint	Mailer	or	Logger	interfaces	all	across	your	code,	and	then	choose	once
in	a	service	provider	which	specific	mailer	or	logger	you	want	to	use	everywhere.	That’s
inversion	of	control.

Contextual	Binding
Sometimes	you	need	to	change	how	to	resolve	an	interface	depending	on	the	context.	You
might	want	to	log	events	from	one	place	to	a	local	syslog	and	from	others	out	to	an	external
service.	So,	let’s	tell	the	container	to	differentiate	—	check	out	Example	11-7.

Example	11-7.	Contextual	binding
//	In	a	service	provider

public	function	register()

{

				$this->app->when(FileWrangler::class)

								->needs(Interfaces\Logger::class)

								->give(Loggers\Syslog::class);

				$this->app->when(Jobs\SendWelcomeEmail::class)

								->needs(Interfaces\Logger::class)

								->give(Loggers\PaperTrail::class);

}

Constructor	Injection
We’ve	covered	the	concept	of	constructor	injection,	and	we’ve	looked	at	how	the	container
makes	it	easy	to	resolve	instances	of	a	class	or	interface	out	of	the	container.	We	saw	how
easy	it	is	to	use	the	app()	helper	to	make	instances,	and	also	how	the	container	will	resolve
the	constructor	dependencies	of	a	class	when	it’s	creating	it.

What	we	haven’t	covered	yet	is	how	the	container	is	also	responsible	for	resolving	many	of
the	core	operating	classes	of	your	application.	For	example,	every	controller	is	instantiated
by	the	container.	That	means	if	you	want	an	instance	of	a	logger	in	your	controller,	you	can
simply	typehint	the	logger	class	in	your	controller ’s	constructor,	and	when	Laravel	creates
the	controller,	it	will	resolve	it	out	of	the	container	and	that	logger	instance	will	be	available
to	your	controller.	Take	a	look	at	Example	11-8	for	an	example.

Example	11-8.	Injecting	dependencies	into	a	controller
...

class	MyController	extends	Controller

{

				protected	$logger;

				public	function	__construct(Logger	$logger)

				{

								$this->logger	=	$logger;

				}

				public	function	index()

				{

								//	Do	something

								$this->logger->error('Something	happened');

				}

}

The	container	is	responsible	for	resolving	controllers,	middleware,	queue	jobs,	event
listeners,	and	any	other	classes	that	are	automatically	generated	by	Laravel	in	the	process	of
your	application’s	lifecycle	—	so	any	of	those	classes	can	typehint	dependencies	in	their
constructors	and	expect	them	to	be	automatically	injected.

Method	Injection
There	are	a	few	places	in	your	application	where	Laravel	doesn’t	just	read	the	constructor
signature:	it	also	reads	the	method	signature	and	will	inject	dependencies	for	you	there	as
well.

The	most	common	place	to	use	method	injection	is	in	controller	methods.	If	you	have	a
dependency	you	only	want	to	use	for	a	single	controller	method,	you	can	inject	it	into	just	that
method	like	in	Example	11-9.

Example	11-9.	Injecting	dependencies	into	a	controller	method
...

class	MyController	extends	Controller

{

				//	Method	dependencies	can	come	after	or	before	route	parameters

				public	function	show(Logger	$logger,	$id)

				{

								//	Do	something

								$logger->error('Something	happened');

				}

}

This	is	also	available	on	the	boot()	method	of	service	providers,	and	you	can	also	arbitrarily
call	a	method	on	any	class	using	the	container,	which	will	allow	for	method	injection	there
(see	Example	11-10).

Example	11-10.	Manually	calling	a	class	method	using	the	container’s	call()	method
class	Foo

{

				public	function	bar($parameter1)	{}

}

$foo	=	new	Foo;

//	Calls	the	'bar'	method	on	$foo	with	a	first	parameter	of	"value"

app()->call($foo,	'bar',	['parameter1'	=>	'value']);

Facades	and	the	Container
We’ve	covered	facades	quite	a	bit	so	far	in	the	book,	but	we	haven’t	actually	talked	about	how
they	work.

Laravel’s	facades	are	classes	that	provide	simple	access	to	core	pieces	of	Laravel’s
functionality.	There	are	two	trademark	features	of	facades:	first,	they’re	all	available	in	the
global	namespace	(\Log	is	an	alias	to	\Illuminate\Support\Facades\Log),	and	second,	they
use	static	methods	to	access	nonstatic	resources.

Let’s	take	a	look	at	the	Log	facade,	since	we’ve	been	looking	at	logging	already	in	this	chapter.
In	your	controller	or	views	you	could	use	this	call:

Log::alert('Something	has	gone	wrong!');

Here’s	what	it	would	look	like	to	make	that	same	call	without	the	facade:

$logger	=	app('log');

$logger->alert('Something	has	gone	wrong!');

As	you	can	see,	facades	translate	static	calls	(any	method	call	that	you	make	on	a	class	itself,
using	::,	instead	of	on	an	instance)	to	normal	method	calls	on	instances.

IMPORTING	FACADE	NAMESPACES
If	you’re	in	a	namespaced	class,	you’ll	want	to	be	sure	to	import	the	facade	at	the	top:

...

use	Illuminate\Support\Facades\Log;

class	Controller	extends	Controller

{

				public	function	index()

				{

								//	...

								Log::error('Something	went	wrong!');

				}

How	Facades	Work
So,	let’s	take	a	look	at	the	Log	facade	and	see	how	it	actually	works.

First,	open	up	the	class	Illuminate\Support\Facades\Log.	You’ll	see	something	like
Example	11-11.

Example	11-11.	The	Log	facade	class
<?php

namespace	Illuminate\Support\Facades;

class	Log	extends	facade

{

				protected	static	function	getFacadeAccessor()

				{

								return	'log';

				}

}

Every	facade	has	a	single	method:	getFacadeAccessor().	This	defines	the	key	that	Laravel
should	use	to	look	up	this	facade’s	backing	instance	from	the	container.

In	this	instance,	we	can	see	that	every	call	to	the	Log	facade	is	proxied	to	be	a	call	to	an
instance	of	the	log	shortcut	from	the	container.	Of	course,	that’s	not	a	real	class	or	interface
name,	so	we	know	it’s	one	of	those	shortcuts	I	mentioned	earlier.

So,	here’s	what’s	really	happening:

Log::error('Help!');

//	is	the	same	as...

app('log')->error('Help!');

There	are	a	few	ways	to	look	up	exactly	what	class	each	facade	accessor	points	to,	but
checking	the	documentation	is	the	easiest.	There’s	a	table	on	the	facades	documentation	page
that	shows	you,	for	each	facade,	which	container	binding	(shortcut,	like	log)	it’s	connected	to,
and	which	class	that	returns.	It	looks	like	this:

Facade Class Service	Container	Binding

App Illuminate\Foundation\Application app

… … …

Log Illuminate\Log\Writer log

Now	that	you	have	this	reference,	you	can	do	three	things.

First,	you	can	always	figure	out	what	methods	are	available	on	a	facade.	Just	find	its	backing
class	and	look	at	the	definition	of	that	class,	and	you’ll	know	that	any	of	its	public	methods	are
callable	on	the	facade.

https://laravel.com/docs/facades

Second,	you	can	figure	out	how	to	inject	a	facade’s	backing	class	using	dependency	injection.
If	you	ever	want	the	functionality	of	a	facade	but	prefer	to	use	dependency	injection,	just
typehint	the	facade’s	backing	class	or	get	an	instance	of	it	with	app()	and	call	the	same
methods	you	would’ve	called	on	the	facade.

Third,	you	can	see	how	to	create	your	own	facades.	Create	a	class	for	the	facade	that	extends
Illuminate\Support\Facades\Facade,	and	give	it	a	getFacadeAccessor()	method,	which
returns	a	string.	Make	that	string	something	that	can	be	used	to	resolve	your	backing	class	out
of	the	container	—	maybe	just	the	FQCN	of	the	class.	Finally,	you	have	to	register	the	facade
by	adding	it	to	the	aliases	array	in	config/app.php.	Done!	You	just	made	your	own	facade.

Service	Providers
We’ve	covered	the	basics	of	service	providers	in	the	previous	chapter	(see	“Service
Providers”).	What’s	most	important	with	regard	to	the	container	is	that	you	remember	to
register	your	bindings	in	the	register()	method	of	some	service	provider	somewhere.

You	can	just	dump	loose	bindings	into	App\Providers\AppServiceProvider,	which	is	a	bit	of
a	catchall,	but	it’s	generally	better	practice	to	create	a	unique	service	provider	for	each	group
of	functionality	you’re	developing,	and	bind	its	classes	in	its	unique	register()	method.

Testing
The	ability	to	use	inversion	of	control	and	dependency	injection	makes	testing	in	Laravel
extremely	versatile.	You	can	bind	a	different	logger,	for	instance,	depending	on	whether	the
app	is	live	or	under	testing.	Or	you	can	change	the	transactional	email	service	from	Mailgun
to	a	local	email	logger	for	easy	inspection.	Both	of	these	swaps	are	actually	so	common	that
it’s	even	easier	to	make	them	using	Laravel’s	.env	configuration	files,	but	you	can	make
similar	swaps	with	any	interfaces	or	classes	you’d	like.

The	easiest	way	to	do	this	is	to	explicitly	re-bind	classes	and	interfaces	when	you	need	them
rebound,	directly	in	the	test.	Example	11-12	shows	how.

Example	11-12.	Overriding	a	binding	in	tests
public	function	test_it_does_something()

{

				app()->bind(Interfaces\Logger,	function	()	{

								return	new	DevNullLogger;

				});

				//	do	stuff

}

If	you	need	certain	classes	or	interfaces	rebound	globally	for	your	tests	(which	is	not	a
particularly	common	occurrence),	you	can	do	this	either	in	the	test	class’s	setUp()	method	or
in	Laravel’s	TestCase	base	test’s	setUp()	method,	as	in	Example	11-13.

Example	11-13.	Overriding	a	binding	for	all	tests
class	TestCase	extends	\Illuminate\Foundation\Testing\TestCase

{

				public	function	setUp()

				{

								parent::setUp();

								app()->bind('whatever',	'whatever	else');

				}

}

When	using	something	like	Mockery,	it’s	common	to	create	a	mock	or	spy	or	stub	of	a	class,
and	then	re-bind	that	to	the	container	in	place	of	its	referent.

TL;DR
Laravel’s	service	container	has	many	names,	but	in	the	end	its	goal	is	to	make	it	easy	to	define
how	to	resolve	certain	string	names	as	concrete	instances.	These	string	names	are	going	to	be
the	fully	qualified	class	names	of	classes	or	interfaces,	or	shortcuts	like	log.

Each	binding	teaches	the	application,	given	a	string	key	(e.g.,	app('log')),	how	to	resolve	a
concrete	instance.

The	container	is	smart	enough	to	do	recursive	dependency	resolution,	so	if	you	try	to	resolve
an	instance	of	something	that	has	constructor	dependencies,	the	container	will	try	to	resolve
those	dependencies	based	on	their	typehints,	then	pass	them	into	your	class,	and	finally	return
an	instance.

There	are	a	few	ways	to	bind	to	the	container,	but	in	the	end	they	all	define	what	to	return
given	a	particular	string.

Facades	are	simple	shortcuts	that	make	it	easy	to	use	static	calls	on	a	root-namespaced	class	to
call	nonstatic	methods	on	classes	resolved	out	of	the	container.

Chapter	12.	Testing

Most	developers	know	that	testing	your	code	is	A	Good	Thing.	We’re	supposed	to	do	it.	We
likely	have	an	idea	of	why	it’s	good,	and	we	might’ve	even	read	some	tutorials	about	how	it’s
supposed	to	work.

But	the	gap	between	knowing	why	you	should	test	and	knowing	how	to	test	is	wide.
Thankfully,	tools	like	PHPUnit,	Mockery,	and	PHPSpec	have	provided	an	incredible	number
of	options	for	testing	in	PHP	—	but	it	can	still	be	pretty	overwhelming	to	get	everything	set
up.

Out	of	the	box,	Laravel	comes	with	baked-in	integrations	to	PHPUnit	(unit	testing),	Behat
(behavior-driven	development),	Mockery	(mocking),	and	Faker	(creating	fake	data	for
seeding	and	testing).	It	also	comes	with	its	own	simple	and	powerful	suite	of	application
testing	tools,	which	allow	you	to	“crawl”	your	site’s	URIs,	click	buttons,	submit	forms,	check
HTTP	status	codes,	and	validate	and	assert	against	JSON.

Laravel’s	testing	setup	even	has	a	sample	application	test	that	can	run	successfully	the	moment
you	create	a	new	app.	That	means	you	don’t	have	to	spend	any	time	configuring	your	testing
environment,	and	that’s	one	less	barrier	to	writing	your	tests.

TESTING	TERMS

It’s	hard	to	get	any	group	of	programmers	to	agree	on	which	terms	they	use	to	define	different	types	of	tests.

In	this	book,	I’ll	use	three	primary	terms:

Unit	tests
Unit	tests	target	small,	relatively	isolated	units	—	a	class	or	method,	usually.

Integration	tests
Integration	tests	test	the	way	individual	units	work	together	and	pass	messages.

Application	tests
Often	called	acceptance	or	functional	tests,	application	tests	test	the	entire	behavior	of	the	application,	usually	at	an
outer	boundary	by	employing	something	like	a	document	object	model	(DOM)	crawler	—	which	is	exactly	what
Laravel’s	application	test	suite	offers.

Testing	Basics
Tests	in	Laravel	live	in	the	tests	folder,	and	you	can	see	there	are	two	files	in	there	by	default:
TestCase.php,	which	is	a	base	class	intended	to	be	extended	by	any	application	tests,	and
ExampleTest.php,	which	is	a	ready-to-run	application	test	that	will	return	green	on	any	new
app.

As	you	can	see	in	Example	12-1,	ExampleTest	“crawls”	the	DOM	of	the	page	returned	at	the
root	path	of	your	application	and	checks	for	the	word	“Laravel.”	If	it	finds	it,	it’ll	pass;	if	not,
it’ll	fail.

Example	12-1.	tests/ExampleTest.php
<?php

use	Illuminate\Foundation\Testing\WithoutMiddleware;

use	Illuminate\Foundation\Testing\DatabaseMigrations;

use	Illuminate\Foundation\Testing\DatabaseTransactions;

class	ExampleTest	extends	TestCase

{

				/**

					*	A	basic	functional	test	example.

					*

					*	@return	void

					*/

				public	function	testBasicExample()

				{

								$this->visit('/')

													->see('Laravel');

				}

}

To	run	this	test,	go	to	the	command	line	and	run	./vendor/bin/phpunit	from	the	root	folder
of	your	application.	You	should	see	something	like	the	output	in	Example	12-2.

Example	12-2.	Sample	ExampleTest	output
PHPUnit	5.5.2	by	Sebastian	Bergmann	and	contributors.

.

Time:	139	ms,	Memory:	12.00Mb

OK	(1	test,	2	assertions)

You	just	ran	your	first	Laravel	application	test!	As	you	can	see,	you’re	set	up	out	of	the	box
not	only	with	a	functioning	PHPUnit	instance,	but	also	a	full-fledged	application	testing	suite
complete	with	a	DOM	crawler.

In	case	you’re	not	familiar	with	PHPUnit,	let’s	change	the	test	to	look	for	“Applesauce,”	like
in	Example	12-3,	to	see	what	an	error	looks	like.

Example	12-3.	tests/ExampleTest.php,	edited	to	fail
public	function	testBasicExample()

{

				$this->visit('/')

									->see('Applesauce');

}

Whoops!	This	time	the	output	will	probably	look	a	bit	like	Example	12-4.

Example	12-4.	Sample	failing	ExampleTest	output
PHPUnit	5.5.2	by	Sebastian	Bergmann	and	contributors.

F

Time:	115	ms,	Memory:	12.00Mb

There	was	1	failure:

1)	ExampleTest::testBasicExample

<source	of	page	here>

Failed	asserting	that	the	page	contains	the	HTML	[Applesauce].

Please	check	the	content	above.

/path-to-your-app/vendor/.../Foundation/Testing/Constraints/PageConstraint.php:90

/path-to-your-app/vendor/.../Foundation/Testing/Concerns/InteractsWithPages.php:271

/path-to-your-app/vendor/.../Foundation/Testing/Concerns/InteractsWithPages.php:287

/path-to-your-app/tests/ExampleTest.php:21

FAILURES!

Tests:	1,	Assertions:	2,	Failures:	1.

Let’s	break	this	down.	First,	we	get	an	F	instead	of	a	.	up	top	(just	below	the	PHPUnit
attribution	information).	Then,	for	each	error,	it	shows	us	the	test	name	(here,	1)
ExampleTest::testBasicExample),	the	error	message	(Failed	asserting...),	and	a	full	stack
trace	of	our	error,	so	we	can	see	what	was	called.	Since	this	was	an	application	test,	the	stack
trace	just	shows	us	that	it	was	called	via	the	InteractsWithPages	trait,	but	if	this	were	a	unit	or
application	test,	we’d	see	the	entire	call	stack	of	the	test.

A	SAMPLE	JSON	TEST

As	you	can	see	in	this	example,	JSON	testing	is	simple	and	clear	—	perhaps	simpler	than	any	other	sort	of	application
testing:

public	function	test_people_list_shows_person_after_creation()

{

				$this->json('post',	'people',	['name'	=>	'matt']);

				$this->json('get',	'people');

				$this->seeJson(['name'	=>	'matt']);

}

Just	run	your	POST,	GET,	DELETE,	or	whatever	else,	and	then	assert	that	the	database,	or	additional	GET	response,	or
anything	else	returns	what	you	expect	after	you’ve	performed	the	given	action.

Let’s	learn	more	about	Laravel’s	testing	environment.

Naming	Tests
By	default,	Laravel’s	testing	system	will	run	any	files	in	the	tests	directory	whose	names	end
with	the	word	Test.	That’s	why	tests/ExampleTest.php	was	run	by	default.

If	you’re	not	familiar	with	PHPUnit,	you	might	not	know	that	only	the	methods	in	your	tests
with	names	that	start	with	the	word	test	will	be	run	—	or	methods	with	a	@test	docblock.	See
Example	12-5	for	which	methods	will	and	won’t	run.

Example	12-5.	Naming	PHPUnit	methods
class	Naming

{

				public	function	test_it_names_things_well()

				{

								//	Runs	as	"test	it	names	things	well"

				}

				public	function	testItNamesThingsWell()

				{

								//	Runs	as	"It	names	things	well"

				}

				/**	@test	*/

				public	function	it_names_things_well()

				{

								//	Runs	as	"it	names	things	well"

				}

				public	function	it_names_things_well()

				{

								//	Doesn't	run

				}

}

The	Testing	Environment
Any	time	a	Laravel	application	is	running,	it	has	a	current	“environment”	name	that	represents
the	environment	it’s	running	in.	This	name	may	be	set	to	local,	staging,	production,	or
anything	else	you	want.	You	can	retrieve	this	by	running	app()->environment(),	or	you	can
run	something	like	if	(app()->environment('local'))	to	test	whether	the	current
environment	matches	the	passed	name.

When	you	run	tests,	Laravel	automatically	sets	the	environment	to	testing.	This	means	you
can	test	for	if	(app()->environment('testing'))	to	enable	or	disable	certain	behaviors	in
the	testing	environment.

Additionally,	Laravel	doesn’t	load	the	normal	environment	variables	from	.env	for	testing.	If
you	want	to	set	any	environment	variables	for	your	tests,	edit	phpunit.xml	and,	in	the	<php>
section,	add	a	new	<env>	for	each	environment	variable	you	want	to	pass	in	—	for	example,
<env	name="DB_CONNECTION"	value="sqlite"/>.

USING	.ENV.TEST	TO	EXCLUDE	TESTING	ENVIRONMENT	
VARIABLES	FROM	VERSION	CONTROL

If	you	want	to	set	environment	variables	for	your	test,	you	can	do	so	in	phpunit.xml	as	just	described.	But	what	if	you
have	environment	variables	for	your	tests	that	you	want	to	be	different	for	each	testing	environment?	Or	what	if	you	want
them	to	be	excluded	from	source	control?

Thankfully,	handling	these	conditions	is	pretty	easy.	First,	create	an	.env.test.example	file	—	just	like	Laravel’s
.env.example	file	—	and	add	.env.test	to	your	.gitignore	file	just	below	.env.	Next,	add	the	variables	you’d	like	to	be
environment-specific	to	.env.test.example,	just	like	they’re	set	in	.env.example.	Then,	make	a	copy	of	.env.test.example
and	name	it	.env.test.

Finally,	let’s	load	that	file	into	our	tests.	In	tests/TestCase.php,	in	the	createApplication()	method,	paste	this	code	just
below	the	$app	=	require(...)	line:

if	(file_exists(dirname(__DIR__)	.	'/.env.test'))	{

				(new	\Dotenv\Dotenv(dirname(__DIR__),	'.env.test'))->load();

}

That’s	it!	You’re	now	loading	.env.test	to	provide	environment	variables	to	every	test.

The	Testing	Traits
Before	we	get	into	the	methods	you	can	use	for	testing,	you’ll	want	to	know	about	the	three
testing	traits	you	can	pull	into	any	test	class.

WithoutMiddleware
If	you	import	Illuminate\Foundation\Testing\WithoutMiddleware	into	your	test	class,	it
will	disable	all	middleware	for	any	test	in	that	class.	This	means	you	won’t	have	to	worry
about	the	authentication	middleware,	or	CSRF	protection,	or	anything	else	that	might	be
useful	in	the	real	application	but	distracting	in	a	test.

DatabaseMigrations
Laravel	provides	two	tools	out	of	the	box	to	keep	your	database	in	the	right	state	between
tests:	the	DatabaseMigrations	trait	and	the	DatabaseTransactions	trait.

If	you	import	the	DatabaseMigrations	trait,	it	will	run	your	entire	set	of	database	migrations
up	before	each	test	and	down	after	each	test.	Laravel	makes	this	happen	by	running	php
artisan	migrate	in	the	setUp()	method	before	every	test	runs	and	php	artisan
migrate:rollback	in	the	tearDown()	method	after	each	test	finishes.

DatabaseTransactions
DatabaseTransactions,	on	the	other	hand,	expects	your	database	to	be	properly	migrated
before	your	tests	start.	Then,	it	wraps	every	test	in	a	database	transaction,	which	it	rolls	back	at
the	end	of	each	test.	This	means	that,	at	the	end	of	each	test,	your	database	will	be	returned	to
the	exact	same	state	it	was	in	prior	to	the	test.

Application	Testing
Now	that	we’ve	laid	out	the	basic	framework	of	Laravel’s	testing	environment,	let’s	take	a
look	at	how	it	actually	works.

In	Laravel’s	default	ExampleTest	(tests/ExampleTest.php)	you	can	see	that,	with	a	few	lines	of
code,	we	can	“crawl”	to	particular	URIs	in	our	application	and	actually	check	the	output	for
certain	words.	But	how	can	PHPUnit	navigate	pages	as	if	it	were	a	browser?

TestCase
Any	application	tests	should	extend	the	TestCase	class	(tests/TestCase.php)	that’s	included	with
Laravel	by	default.	Your	application’s	TestCase	class	will	extend	the	abstract
Illuminate\Foundation\Testing\TestCase	class,	which	brings	in	quite	a	few	goodies.

The	first	thing	the	two	TestCase	classes	(yours	and	its	abstract	parent)	do	is	handle	booting	the
Illuminate	application	instance	for	you,	so	you	have	a	fully	bootstrapped	application
available.	They	also	“refresh”	the	application	between	each	test,	which	means	they’re	not
entirely	re-creating	the	application	between	tests,	but	rather	making	sure	you	don’t	have	any
data	lingering.

The	parent	TestCase	also	sets	up	a	system	of	hooks	that	allow	callbacks	to	be	run	before	and
after	the	application	is	created,	and	imports	a	series	of	traits	that	provide	you	with	methods
for	interacting	with	every	aspect	of	your	application.	These	traits	include
InteractsWithContainer,	MakesHttpRequests,	InteractsWithConsole,	and	more,	and	they
bring	in	a	broad	variety	of	custom	assertions	and	testing	methods.

As	a	result,	your	application	tests	have	access	to	a	fully	bootstrapped	application	instance,
application-test-minded	custom	assertions,	and	a	DOM	crawler,	with	a	series	of	simple	and
powerful	wrappers	around	each	to	make	them	easy	to	use.

That	means	you	can	write	$this->visit('/')->see('Laravel')	and	know	that	your
application	is	actually	behaving	as	if	it	were	responding	to	a	normal	HTTP	request,	and	that
the	response	is	being	passed	to	a	DOM	crawler	that	is	checking	for	that	text	for	you.	It’s	pretty
powerful	stuff,	considering	how	little	work	you	had	to	do	to	get	it	running.

So,	let’s	look	at	some	basic	methods	this	opens	up	to	you.

DIFFERENT	TRAIT	STRUCTURE	IN	LARAVEL	5.1
In	Laravel	5.1,	the	structure	of	testing	traits	and	how	the	testing	framework	is	organized	is	very	different	from
what	I’ve	described	here;	however,	the	functionality	is	still	the	same.

“Visiting”	Routes
The	most	complex	of	Laravel’s	application	testing	functionality	is	also	the	simplest	—	and
most	powerful	—	to	use.	Using	these	methods,	your	tests	can	interact	with	(“visit”)	pages	in
your	application	like	never	before:

$this->visit($uri)

Visiting	a	route	is	at	the	core	of	Laravel’s	application	testing.	When	you	call	$this-
>visit('dashboard'),	you’re	mimicking	the	action	the	framework	takes	when	a	web
request	comes	in	for	that	same	route.	The	application	will	create	a	request	object	for	that
request,	handle	it	like	normal,	and	store	the	response	object	(an	instance	of
Illuminate\Http\Response)	in	$this->response.
This	is	the	same	response	object	that	would	normally	be	returned	and	displayed	to	the
browser,	but	it’s	just	cached	for	Laravel’s	application	testing	assertions	to	check	against
(or	for	your	code,	if	you	want	to	interact	with	the	response).
On	its	own,	visiting	doesn’t	do	much,	but	now	that	you	have	a	response	cached	in	$this-
>response,	you	can	write	assertions	against	it.

WHAT	MAKES	VISIT() 	DIFFERENT	FROM	THE	OTHER 	VISITING	METHODS

We’re	about	to	cover	call(),	and	get(),	and	many	other	methods	related	to	visiting	routes.	But	they’re	much	simpler
than	visit(),	and	it’s	worth	seeing	just	what	makes	visit()	different.

Here’s	a	shortened	definition	of	the	visit()	method:

public	function	visit($uri)

{

				$uri	=	$this->prepareUrlForRequest($uri);

				$this->call($method,	$uri,	$parameters,	$cookies,	$files);

				$this->clearInputs()->followRedirects()->assertPageLoaded($uri);

				$this->currentUri	=	$this->app->make('request')->fullUrl();

				$this->crawler	=	new	Crawler(

								$this->response->getContent(),

								$this->currentUri

);

				return	$this;

}

I	know	this	is	a	lot	to	take	in,	so	just	suffice	it	to	say	visit()	is	doing	a	lot.	When	you	want	to	check	that	a	page	loads,
when	you	want	to	crawl	a	page,	when	you	want	to	do	all	this	nearly	magical	application	testing,	use	visit().

If	you	just	want	to	get	a	response	and	nothing	else,	or	if	you’re	using	more	traditional	checks	to	POST	to	a	page	and	assert
certain	behavior	happens	or	something	else,	you’ll	be	fine	using	the	simpler	methods	like	call().

$this->call($method,	$uri,	$params	=	[],	$cookies	=	[],	$files	=	[],	$server	=	[],
$content	=	null)

If	you	need	to	make	calls	against	the	server	without	worrying	about	crawling	the
returned	DOM	—	for	example,	if	you	want	to	assert	that	a	given	POST	has	certain	effects
—	there’s	a	method	for	that.	visit()	is	actually	based	on	call(),	but	you	can	also	use
call()	directly.
As	you	can	see	from	the	method	definition,	we	have	a	lot	of	options	available	to	us	when
we	use	call()	—	the	HTTP	method,	the	URI,	parameters,	cookies,	and	files,	all
pretending	to	be	sent	along	with	our	call.
Just	like	when	you	use	visit(),	these	requests	will	make	a	request	and	store	the	response
on	$this->response,	but	they	won’t	enable	any	DOM-crawling-based	assertions	like
see().

$this->get($uri,	$headers	=	[]),	->post($uri,	$data	=	[],	$headers	=	[]),	
->put($uri,	$data	=	[],	$headers	=	[]),	->patch(),	and	->delete()

These	are	a	series	of	convenience	helpers	that	wrap	call();	they’re	all	just	shortcuts	to
passing	a	particular	string	to	the	first	parameter	of	call(),	the	HTTP	method.	Otherwise,
you	can	use	them	exactly	the	same	as	you	would	call().

$this->json($method,	$uri,	$data	=	[],	$headers	=	[])
Just	like	get(),	post(),	and	the	other	methods	just	mentioned	json()	is	a	wrapper
around	call().	It	converts	the	passed	data	to	JSON	and	adds	JSON	request	headers,	and
then	passes	it	all	into	call().
json()	is	exceptionally	useful,	unsurprisingly,	for	testing	JSON	APIs.	Because	you	can
even	define	your	headers	and	data,	you	can	use	this	method	to	fully	interact	with	your
REST	APIs	in	your	tests,	like	we	saw	in	“A	Sample	JSON	Test”.

$this->followRedirects()

There’s	actually	another	thing	that	visit()	does	that	call()	doesn’t:	it	tells	Laravel	to
follow	any	redirects	using	followRedirects(),	and	then	checks	that	the	eventual	landing
page	loaded	using	assertPageLoaded().
Without	followRedirects(),	the	response	you’ll	get	after	calling	a	redirected	page	will
just	be	the	contents	of	the	redirect,	not	the	page	that	you	were	being	redirected	to.

Custom	Application	Testing	Assertions
So,	what	are	the	new	application	testing	assertions	we’ve	gained?	There	are	quite	a	few.	Let’s
start	simple	and	move	up:

$this->assertPageLoaded()

assertPageLoaded()	checks	that	you	got	an	HTTP	status	code	of	200	when	loading	the
page.

$this->see()	and	->dontSee()
Like	we	saw	earlier	in	this	chapter,	see()	takes	a	string	and	uses	a	regular	expression	to
check	that	that	string	is	present	somewhere	on	the	page	that’s	rendered.	dontSee()	is	its
inverse.

$this->seeLink()	and	->dontSeeLink()
seeLink()	takes	two	parameters:	first,	the	link	text	to	find,	and	second,	optionally,	the
URL.	dontSeeLink()	is	its	inverse.

$this->seeHeader()

seeHeader()	takes	two	parameters:	first,	the	name	of	the	header,	and	second,	optionally,
the	value	of	the	header.

$this->seeCookie()

seeCookie()	takes	two	parameters:	first,	the	name	of	the	cookie,	and	second,	optionally,
the	value	of	the	cookie.

$this->seeInField()	and	->dontSeeInField()
seeInField()	takes	two	parameters:	first,	the	name	or	ID	of	the	input	or	text	area	to	look
at,	and	second,	the	value	to	look	for.	dontSeeInField()	is	its	inverse.

$this->seeIsChecked()	and	->dontSeeIsChecked()
seeIsChecked()	takes	one	parameter,	the	name	or	ID	of	the	checkbox	input	to	inspect.
dontSeeIsChecked()	is	its	inverse.

$this->seeIsSelected()	and	->dontSeeIsSelected()
seeIsSelected()	takes	two	parameters:	first,	the	name	or	ID	of	the	select	box	to	inspect,
and	second,	the	value	to	check	whether	it	is	set	to.	dontSeeIsSelected()	is	its	inverse.

$this->seePageIs()

seePageIs()	asserts	that	the	current	loaded	page	URI	is	the	same	as	the	parameter	you
pass	to	it.

$this->seeInDatabase()	and	->dontSeeInDatabase()
To	check	for	records	in	the	database	table,	pass	in	the	table	name	as	the	first	parameter	of
seeInDatabase()	and	the	data	you’re	looking	for	as	the	second:

public	function	test_database_has_user_after_registration()

{

				$this

								->visit('register')

								->fillForm([

												'email'	=>	'matt@mattstauffer.co'

])

								->submitForm();

				$this->seeInDatabase('emails',	['email'	=>	'matt@mattstauffer.co']);

}

As	you	can	see,	the	second	“data”	parameter	of	seeInDatabase()	is	structured	like	a	SQL
WHERE	statement	—	you	pass	a	key	and	a	value	(or	multiple	keys	and	values),	and	then
Laravel	looks	for	any	records	in	the	specified	database	table	that	match	your	key(s)	and
value(s).
As	always,	dontSeeInDatabase()	is	the	inverse.

JSON	and	Non-visit()	Application	Testing	Assertions
The	remaining	application	assertions	are	tied	less	closely	to	the	visit()	methodology	and	a
little	more	closely	to	the	implementation	details	of	your	application.	Quite	a	few	of	these	are
also	often	used	for	testing	JSON	APIs:

$this->seeJson(),	->dontSeeJson(),	->seeJsonEquals()
seeJson()	with	no	parameters	checks	to	make	sure	that	the	content	of	the	response	was
valid	JSON.	Its	optional	parameter	represents	the	data	that	you’re	checking	for.	For
instance,	in	the	following	example	we	receive	a	response,	and	we’re	checking	both	that	it
is	valid	JSON	and	that	it	contains	a	key/value	pair	of	username/mattstauffer	somewhere
in	it:

public	function	test_api_returns_certain_json()

{

				$this->json('get',	'users');

				$this->seeJson(['username'	=>	'mattstauffer']);

}

As	always,	seeJson()	has	an	inverse,	dontSeeJson().	dontSeeJson()	still	expects	valid
JSON,	but	it	expects	to	not	see	anything	passed	in	as	data.
Finally,	if	you	want	to	check	that	the	JSON	maps	exactly	to	your	data,	you	can	try
seeJsonEquals(),	which	compares	a	data	array	to	the	JSON	response	and	throws	an
exception	if	they	don’t	match	exactly.

$this->assertResponseOK()	and	->assertResponseStatus($status)
After	any	call()	or	visit(),	one	valuable	assertion	is	just	that	the	page	loaded	with	the
HTTP	status	you	expected.	assertResponseOK()	asserts	that	the	page	returned	a	200
HTTP	status	code,	but	you	can	also	pass	a	specific	status	that	you	expect:

public	function	test_pages_load_the_way_we_want()

{

				$this->get('people');

				$this->assertResponseOK();

				$this->call('post',	'owners');

				$this->assertResponseStatus(405);	//	Method	not	allowed

}

You	could	even	check	the	authorization	settings	for	a	particular	route	by	asserting	that	it
gives	a	401	(Unauthorized)	status	code,	then	authenticate	and	assert	it	gives	a	200	status
code.

$this->assertViewHas($key,	$value	=	null),	->assertViewHasAll(array
$bindings),	->assertViewMissing($key)

Sometimes	the	only	option	you	have	is	to	assert	that	you	see	a	particular	phrase	on	a
page	using	see(),	but	what’s	more	likely	is	that	you’re	really	checking	that	the	correct
data	was	passed	to	your	view.	Thankfully,	you	can	check	that	directly	with	these	methods.
assertViewHas()	checks	that	data	with	a	particular	key	was	sent	to	the	most	recently
retrieved	view,	and	if	you	pass	the	assertion	a	second	parameter,	it	will	assert	that	that
data	was	equal	to	it:

//	Route

Route::get('test',	function	()	{

				return	view('test')->with('foo',	'bar');

});

//	Test

public	function	test_view_gets_data()

{

				$this->get('test');

				$this->assertViewHas('foo');	//	true

				$this->assertViewHas('foo',	'bar');	//	true

				$this->assertViewHas('foo',	'baz');	//	false

}

You	can	also	check	for	multiple	view	variables	at	once	using	assertViewHasAll(),
which	expects	an	array	of	key/value	pairs:

//	Route

Route::get('test',	function	()	{

				return	view('test')

								->with('foo',	'bar')

								->with('baz',	'qux');

});

//	Test

public	function	test_view_gets_data()

{

				$this->get('test');

				$this->assertViewHasAll([

								'foo'	=>	'bar',

								'baz'	=>	'qux'

]);	//	true

}

You	can	ensure	that	the	view	hasn’t	been	passed	a	particular	key	by	passing	that	key	to
assertViewMissing().
In	Laravel	5.3,	as	shown	in	the	following	example,	you	can	pass	a	closure	to	the	second
parameter	of	assertViewHas().	This	gives	you	the	opportunity	to	perform	much	more
nuanced	checks	of	the	data	your	view	is	provided:

public	function	test_events_are_owned_by_user_1()

{

				$this->get('events');

				$this->assertViewHas('events',	function	($events)	{

								return	$events->reject(function	($event)	{

												return	$event->user_id	===	1;

								})->isEmpty();

				});

}

$this->assertRedirectedTo(),	->assertRedirectedToRoute(),	-
>assertRedirectedToAction()

If	you	want	to	ensure	that	the	user	not	only	ends	up	at	a	particular	page	but	was	sent	there
as	a	redirect,	these	methods	provide	that	functionality.	You	can	check	by	URL	(to()),
route	name	(toRoute()),	or	controller	and	method	(toAction()):

//	Route

Route::get('redirector',	function	()	{

				return	redirect('/');

});

Route::get('/',	'HomeController@index')->name('home');

//	Test

public	function	test_redirector_works()

{

				$this->get('redirector');

				$this->assertRedirectedTo('/');

				$this->assertRedirectedToRoute('home');

				$this->assertRedirectedToAction('HomeController@index');

}

$this->assertSessionHas($key,	$value	=	''),	
->assertSessionHasAll($bindings),	->assertSessionHasErrors($bindings	=	[],
$format	=	null),	->assertHasOldInput()

These	methods	make	it	easy	to	check	for	specific	values	in	the	session.
assertSessionHas()	and	assertSessionHasAll()	are	shaped	just	like	assertViewHas()
and	assertViewHasAll().
When	passed	just	one	parameter,	assertSessionHas()	asserts	that	there	is	a	session	value
with	that	key;	if	you	pass	it	two	parameters,	it	asserts	that	the	value	of	that	session	key	is
equal	to	the	session	parameter.	assertSessionHasAll()	takes	an	array	of	key/value	pairs
and	asserts	that	each	key	exists	in	the	session	and	is	set	to	its	corresponding	value:

public	function	test_session_has_stuff()

{

				Session::put('foo',	'bar');

				Session::put('baz',	'qux');

				$this->assertSessionHas('foo');

				$this->assertSessionHas('foo',	'bar');

				$this->assertSessionHasAll([

								'foo'	=>	'bar',

								'baz'	=>	'qux'

]);

}

assertSessionHasErrors()	with	no	parameters	asserts	that	there’s	at	least	one	error	set
in	Laravel’s	special	errors	session	container.	Its	first	parameter	can	be	an	array	of
key/value	pairs	that	define	the	errors	that	should	be	set	and	its	second	parameter	can	be
the	string	format	that	the	checked	errors	should	be	formatted	against,	as	demonstrated
here:

public	function	test_posting_empty_errors_out()

{

				//	assuming	the	"/form"	route	requires	an	email	field,	and	we're

				//	posting	an	empty	form	to	it	to	trigger	the	error

				$this->post('form',	[]);

				$this->assertSessionHasErrors();

				$this->assertSessionHasErrors(['email'	=>	'The	email	field	is	required.']);

				$this->assertSessionHasErrors(

								['email'	=>	'<p>The	email	field	is	required.</p>'],

								'<p>:message</p>'

);

}

Finally,	assertHasOldInput()	asserts	that	some	old	input	has	been	saved	from	a	form
that	was	submitted,	likely	using	redirect()->withOldInput().

Clicking	and	Forms
Let’s	move	into	some	magical	yet	terrifying	powers:	navigating	through	forms,	clicking	and
filling	and	unchecking,	and	even	attaching	files.	Laravel	provides	the	following	methods	for
working	with	forms:

$this->click($name)

Given	a	link	with	the	provided	$name	as	either	the	body	of	the	link	or	its	name	or	ID,
click()	grabs	the	URI	from	that	link	and	visits	it.

$this->type($text,	$element)

Given	an	input	on	the	page	with	the	provided	$element	as	the	name	or	ID,	type()
“types”	the	provided	text	into	it.

MANIPULATING	FORMS

With	this	talk	of	clicking	links	and	typing	into	form	fields,	it	may	seem	like	Laravel	is	running	some	sort	of	JavaScript-
based	application	test	where	it’s	actually	driving	a	browser	interacting	with	the	page.	But	it’s	not,	really.

It’s	storing	up	this	“input”	you’re	creating,	and	if	at	any	point	you	“submit”	the	form,	it’ll	gather	together	your	input	and
post	it	to	the	target	of	the	form.	In	theory	it’s	very	different	from	the	user’s	experience,	but	in	practice	it’s	a	beautifully
eloquent	syntax	for	writing	tests	that	mimic	form	submissions.

$this->check($element)

Given	a	checkbox	on	the	page	with	the	provided	$element	as	the	name	or	ID,	check()
“checks”	it.

$this->uncheck($element)

Given	a	checkbox	on	the	page	with	the	provided	$element	as	the	name	or	ID,	uncheck()
“unchecks”	it.

$this->select($option,	$element)

Given	a	select	box	on	the	page	with	the	provided	$element	as	the	name	or	ID,	select()
sets	its	value	to	$option.

$this->attach($filePath,	$element)

Given	a	file	upload	input	on	the	page	with	the	provided	$element	as	the	name	or	ID,
attach()	attaches	a	file	from	the	given	local	file	path	to	it,	marked	to	upload	when	the
form	is	submitted.

$this->press($buttonText)

Given	a	button	on	the	page	with	the	provided	text,	press()	submits	the	form	that	button	is
a	part	of.

$this->submitForm($buttonText,	$inputs	=	[],	$uploads	=	[])

Given	a	button	on	the	page	with	the	provided	text,	submitForm()	submits	the	form	that
button	is	a	part	of.	You	can	also	optionally	set	or	override	all	of	the	inputs	and	file
uploads	using	the	second	and	third	parameters.

$this->fillForm($buttonText,	$inputs	=	[])

Given	a	button	on	the	page	with	the	provided	text,	fillForm()	finds	the	form	that	button
is	a	part	of	and	sets	all	the	values	to	be	the	provided	values.

$this->clearInputs()

clearInputs()	wipes	any	inputs	or	uploads	that	have	been	previously	set.

Jobs	and	Events
We’ll	cover	these	job-	and	event-related	tests	in	more	depth	in	Chapter	16,	but	let’s	take	a
quick	look	at	how	they	work:

$this->expectsEvents($eventClassName)

If	you	want	to	assert	that	a	particular	class	of	event	was	fired	during	your	test,	you	can
pass	the	class	name	to	expectsEvents():

public	function	test_usersubscribed_event_fires_when_subscribing()

{

				$this->expectsEvents(App\Events\UserSubscribed::class);

				$this->visit('subscribe')->type('me@me.com',	'email')->press('Subscribe');

}

$this->withoutEvents()

withoutEvents()	is	not	actually	an	assertion;	rather,	it	disables	Laravel’s	event	handling
system	so	that,	during	this	test,	you	don’t	have	to	worry	about	the	effects	of	any	of	your
events	taking	place	—	for	example,	sending	any	emails	or	writing	any	logs.

$this->expectsJobs()

If	you	want	to	assert	that	a	particular	class	of	job	was	fired	during	your	test,	you	can	pass
that	class	name	to	expectsJobs():

public	function	test_number_of_subscriptions_crunches_reports()

{

				$this->expectsJobs(App\Jobs\CrunchReports::class);

				$this->visit('subscribe')->type('me@me.com',	'email')->press('Subscribe');

}

Authentication	and	Sessions
Laravel	makes	it	simple	to	set	up	a	test	environment	for	your	tests,	even	making	it	easy	to
control	the	session	and	authenticate	as	a	given	user:

$this->session(['key'	=>	'value'])

session()	starts	the	session	and	saves	any	key/value	pairs	of	data	in	the	provided	array
to	the	session.	You	can	run	this	multiple	times	during	a	test	to	add	different	pieces	of
session	data,	if	you’d	like.

$this->flushSession()

flushSession()	wipes	all	of	the	data	in	the	current	session.

$this->be($authenticatable)

be()	takes	any	object	that	fulfills	the	Illuminate\Contracts\Auth\Authenticatable
interface	(including,	of	course,	the	base	App\User	class)	and	authenticates	every	page
request	or	interaction	in	the	test	as	that	user.	This	means	you	can	write	tests	like	this:

public	function	test_members_cant_see_admin_dashboard()

{

				$member	=	factory(\App\User::class,	'member')->create();

				$this->be($member);

				$this->get('admin-dashboard');

				$this->assertResponseStatus(403);

}

public	function	test_admins_can_see_admin_dashboard()

{

				$admin	=	factory(\App\User::class,	'admin')->create();

				$this->be($admin);

				$this->get('admin-dashboard');

				$this->assertResponseOK();

}

Artisan	and	Seed
Almost	done.	There	are	two	more	test	methods	you	might	want	to	take	a	look	at:

$this->artisan($command,	$parameters	=	[])

If	you	want	to	use	an	Artisan	command	in	a	test,	artisan()	makes	it	easy.	Just	pass	the
command	name	as	the	first	parameter	and,	optionally,	pass	any	parameters	as	an	array	as
the	second.
Doing	so	will	save	the	response	code	to	$this->code	in	case	you’d	like	to	assert	against
it,	but	it	will	also	return	it.	So,	this	functions	the	same	as	Artisan::call()	with	the
addition	of	saving	the	response	to	$this->code:

public	function	test_returns_certain_code()

{

				$this->artisan('do:thing',	['--flagOfSomeSort'	=>	true]);

				$this->assertEquals(0,	$this->code);	//	0	means	"no	errors	were	returned"

}

$this->seed($seederClassName	=	'DatabaseSeeder')

If	you	want	to	seed	your	database,	seed()	will	do	that	for	you;	and	if	you	pass	an
argument,	you	can	choose	to	only	run	a	single	seeder.
seed()	provides	the	same	functionality	as	running	$this->artisan('db:seed').

MODEL	FACTORIES
Model	factories	are	amazing	tools	that	make	it	easy	to	seed	randomized,	well-structured	database	data	for	testing
(or	other	purposes).

We’ve	already	covered	them	in	depth,	so	check	out	“Model	Factories”	to	learn	more.

Mocking
Mocks	(and	their	brethren,	spies	and	stubs	and	dummies	and	fakes	and	who	knows	what	else)
are	common	tools	in	testing.	I	won’t	go	into	great	detail	here,	but	it’s	unlikely	you	can
thoroughly	test	an	application	of	any	size	without	mocking	at	least	one	thing	or	another.

Essentially,	mocks	and	other	similar	tools	make	it	possible	to	create	an	object	that	in	some
way	mimics	a	real	class,	but	for	testing	purposes	isn’t	the	real	class.	Sometimes	this	is	done
because	the	real	class	is	too	difficult	to	instantiate	just	to	inject	it	into	a	test,	or	maybe	the	real
class	communicates	with	an	external	service.

As	you	can	probably	tell	from	these	examples,	Laravel	encourages	working	with	the	real
application	as	much	as	possible	—	which	means	avoiding	too	great	of	a	dependence	on
mocks.	But	they	have	their	place,	which	is	why	Laravel	includes	Mockery,	a	mocking	library,
out	of	the	box.

Mockery
Mockery	allows	you	to	quickly	and	easily	create	mocks	from	any	PHP	class	in	your
application.	Imagine	you	have	a	class	that	depends	on	a	Slack	client,	but	you	don’t	want	the
calls	to	actually	go	out	to	Slack.	Mockery	makes	it	simple	to	create	a	fake	Slack	client	to	use
in	your	tests,	like	you	can	see	in	Example	12-6.

Example	12-6.	Using	Mockery	in	Laravel
//	app/SlackClient.php

class	SlackClient

{

				...

				public	function	send($message,	$channel)

				{

								//	Actually	sends	a	message	to	Slack

				}

}

//	app/Notifier.php

class	Notifier

{

				private	$slack;

				public	function	__construct(SlackClient	$slack)

				{

								$this->slack	=	$slack;

				}

				public	function	notifyAdmins($message)

				{

								$this->slack->send($message,	'admins');

				}

}

//	tests/NotifierTest.php

public	function	test_notifier_notifies_admins()

{

				$slackMock	=	Mockery::mock(SlackClient::class)->shouldIgnoreMissing();

				$notifier	=	new	Notifier($slackMock);

				$notifier->notifyAdmins('Test	message');

}

There	are	a	lot	of	moving	pieces	here,	but	let’s	break	it	down.	We	have	a	class	named
Notifier	that	we’re	testing.	It	has	a	dependency	named	SlackClient	that	does	something	that
we	don’t	want	it	to	do	when	we’re	running	our	tests:	it	sends	actual	Slack	notifications.	So
we’re	going	to	mock	it.

We	use	Mockery	to	get	a	mock	of	our	SlackClient	class.	If	we	don’t	care	about	what	happens
to	that	class	—	if	it	should	simply	exist	to	keep	our	tests	from	throwing	errors	—	we	can	just
use	shouldIgnoreMissing():

$slackMock	=	Mockery::mock(SlackClient::class)-shouldIgnoreMissing();

No	matter	what	Notifier	calls	on	$slackMock,	it’ll	just	accept	it	and	return	null.

But	take	a	look	at	test_notifier_notifies_admins().	At	this	point,	it	doesn’t	actually	test
anything.

We	could	just	keep	shouldIgnoreMissing()	and	then	write	some	assertions	below	it.	That’s
usually	what	we	do	with	shouldIgnoreMissing(),	which	makes	this	object	a	“fake”	or	a
“stub.”

But	what	if	we	want	to	actually	assert	that	a	call	was	made	to	the	send()	method	of
SlackClient?	That’s	when	we	drop	shouldIgnoreMissing()	and	reach	for	the	should*
methods	(Example	12-7).

Example	12-7.	Using	the	shouldReceive	method	on	a	Mockery	mock
public	function	test_notifier_notifies_admins()

{

				$slackMock	=	Mockery::mock(SlackClient::class);

				$slackMock->shouldReceive('send')->once();

				$notifier	=	new	Notifier($slackMock);

				$notifier->notifyAdmins('Test	message');

}

shouldReceive('send')->once()	is	the	same	as	saying	“assert	that	$slackMock	will	have	its
send()	method	called	once	and	only	once.”	So,	we’re	now	asserting	that	Notifier,	when	we
call	notifyAdmins(),	must	make	a	single	call	to	the	send	method	on	SlackClient.

We	could	also	use	something	like	shouldReceive('send')->times(3)	or
shouldReceive('send')->never().

What	if	we	wanted	to	use	the	IoC	container	to	resolve	our	instance	of	the	Notifier?	This
might	be	useful	if	Notifier	had	several	other	dependencies	that	we	didn’t	need	to	mock.

We	can	do	that!	We	just	use	the	instance()	method	on	the	container,	as	in	Example	12-8,	to
tell	Laravel	to	provide	an	instance	of	our	mock	to	any	classes	that	request	it	(which,	in	this
example,	will	be	Notifier).

Example	12-8.	Binding	a	Mockery	instance	to	the	container
public	function	test_notifier_notifies_admins()

{

				$slackMock	=	Mockery::mock(SlackClient::class);

				$slackMock->shouldReceive('send')->once();

				app()->instance(SlackClient::class,	$slackMock);

				$notifier	=	app(Notifier::class);

				$notifier->notifyAdmins('Test	message');

}

There’s	a	lot	more	you	can	do	with	Mockery:	you	can	use	spies,	and	partial	spies,	and	much
more.	Going	deeper	into	how	to	use	Mockery	is	out	of	the	scope	of	this	book,	but	I	encourage
you	to	learn	more	about	the	library	and	how	it	works.

Mocking	Facades
Let’s	say	you	have	a	controller	method	that	calls	a	facade.	Now,	you	want	to	test	that
controller	method,	and	assert	that	that	facade	call	should	be	made.	How	do	you	do	it?
Thankfully,	it’s	simple:	treat	the	facade	like	an	instance	of	Mockery	in	your	test.	Example	12-9
shows	how	this	works.

Example	12-9.	Mocking	a	facade
//	PeopleController

public	function	index()

{

				return	Cache::remember('people',	function	()	{

								return	Person::all();

				});

}

//	PeopleTest

public	function	test_all_people_route_should_be_cached()

{

				$person	=	factory(Person::class)->make();

				Cache::shouldReceive('remember')

								->once()

								->andReturn(collect([$person]));

				$this->visit('people')->seeJson(['name'	=>	$person->name]);

}

As	you	can	see,	you	can	use	methods	like	shouldReceive()	on	the	facades,	just	like	you	do	on
a	Mockery	object.

As	of	Laravel	5.3,	you	can	also	use	your	facades	as	spies,	which	means	you	can	set	your
assertions	at	the	end	and	use	shouldHaveReceived()	instead	of	shouldReceive().
Example	12-10	illustrates	this.

Example	12-10.	Facade	spies
public	function	test_queue_job_should_be_pushed_after_regisration()

{

				Cache::spy();

				$this->post('register',	['email'	=>	'joaquin@me.com']);

				Cache::shouldHaveReceived('push')

								->with(SendWelcomeEmail::class,	['email'	=>	'joaquin@me.com']);

}

TL;DR
Laravel	can	work	with	any	modern	PHP	testing	framework,	but	it	brings	in	a	lot	of
framework-specific	power	if	you	use	PHPUnit	and	if	your	tests	extend	Laravel’s	TestCase.
Laravel’s	application	testing	framework	makes	it	simple	to	send	fake	requests	through	your
application	and	inspect	the	results,	even	“typing”	in	inputs	and	“clicking”	buttons	before
submitting	a	form.

The	TestCase	class	brings	in	a	group	of	methods	that	make	it	easy	to	customize	how	your
tests	interact	with	your	database,	disable	the	effects	of	events,	and	make	assertions	against
framework-level	structures	like	jobs	and	facades.

Laravel	brings	in	Mockery	in	case	you	need	mocks,	stubs,	spies,	dummies,	or	anything	else,
but	the	testing	philosophy	of	Laravel	is	to	use	real	collaborators	as	much	as	possible.	Don’t
fake	it	unless	you	have	to.

Chapter	13.	Writing	APIs

One	of	the	most	common	tasks	Laravel	developers	are	given	is	to	create	an	API,	usually
JSON	and	REST	or	REST-like,	that	allows	third	parties	to	interact	with	the	Laravel
application’s	data.

Laravel	makes	it	incredibly	easy	to	work	with	JSON,	and	its	resource	controllers	are	already
structured	around	REST	verbs	and	patterns.	In	this	chapter	we’ll	learn	about	some	basic	API-
writing	concepts,	the	tools	Laravel	provides	for	writing	APIs,	and	some	external	tools	and
organizational	systems	you’ll	want	to	consider	when	writing	your	first	Laravel	API.

The	Basics	of	REST-Like	JSON	APIs
Representational	State	Transfer	(REST)	is	an	architectural	style	for	building	APIs.
Technically,	REST	is	a	broad	definition	that	could	apply	to	almost	the	entirety	of	the	Internet,
so	don’t	let	yourself	get	overwhelmed	by	the	definition	or	caught	in	an	argument	with	a
pedant.	When	we	talk	about	RESTful	or	REST-like	APIs	in	the	Laravel	world,	we’re	generally
talking	about	APIs	with	a	few	common	characteristics:

Structured	around	“resources”	that	can	be	uniquely	represented	by	URIs,	like	/cats	for
all	cats,	/cats/15	for	a	single	cat	with	the	ID	of	15,	etc.

Interactions	with	resources	primarily	take	place	using	HTTP	verbs	(GET	/cats/15	versus
DELETE	/cats/15)

Stateless,	meaning	there’s	no	persistent	session	authentication	between	requests;	each
request	must	uniquely	authenticate	itself

Cacheable	and	consistent,	meaning	each	request	(except	for	a	few	authenticated-user-
specific	requests)	should	return	the	same	result	regardless	of	who	the	requester	is

Return	JSON

The	most	common	API	pattern	is	to	have	a	unique	URL	structure	for	each	of	your	Eloquent
models	that’s	exposed	as	an	API	resource,	and	allow	for	users	to	interact	with	that	resource
with	specific	verbs	and	get	JSON	back.	Example	13-1	shows	a	few	possible	examples.

Example	13-1.	Common	REST	API	endpoint	structures
GET	/api/cats

[

				{

								id:	1,

								name:	'Fluffy'

				},

				{

								id:	2,

								name:	'Killer'

				}

]

GET	/api/cats/2

{

				id:	2,

				name:	'Killer'

}

DELETE	/api/cats/2

deletes	cat

POST	/api/cats	with	body:

{

				name:	'Mr	Bigglesworth'

}

(creates	new	cat)

PATCH	/api/cats/3	with	body:

{

				name:	'Mr.	Bigglesworth'

}

(updates	cat)

You	can	see	the	basic	set	of	interactions	we	are	likely	to	have	with	our	APIs.	Let’s	dig	into
how	to	make	them	happen	with	Laravel.

Controller	Organization	and	JSON	Returns
Laravel’s	resource	controllers	are	structured	very	similarly	to	a	RESTful	API	controller,	so
let’s	get	started	there.	First	we’ll	create	a	new	controller	for	our	resource,	which	we’ll	route	at
/api/dogs:

php	artisan	make:controller	Api/\DogsController	--resource

Remember,	the	--resource	flag	generates	a	resource	controller	instead	of	a	plain	controller.

ESCAPING	SLASHES	IN	ARTISAN	COMMANDS
Note	that	in	order	to	put	the	DogsController	in	the	Api	namespace,	we	had	to	escape	the	\	namespace	backslash
with	a	forward	slash.

Example	13-2	shows	what	that	controller	will	look	like.

Example	13-2.	A	generated	resource	controller
<?php

namespace	App\Http\Controllers\Api;

use	Illuminate\Http\Request;

use	App\Http\Requests;

use	App\Http\Controllers\Controller;

class	DogsController	extends	Controller

{

				/**

					*	Display	a	listing	of	the	resource.

					*

					*	@return	\Illuminate\Http\Response

					*/

				public	function	index()	{}

				/**

					*	Show	the	form	for	creating	a	new	resource.

					*

					*	@return	\Illuminate\Http\Response

					*/

				public	function	create()	{}

				/**

					*	Store	a	newly	created	resource	in	storage.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@return	\Illuminate\Http\Response

					*/

				public	function	store(Request	$request)	{}

				/**

					*	Display	the	specified	resource.

					*

					*	@param		int		$id

					*	@return	\Illuminate\Http\Response

					*/

				public	function	show($id)	{}

				/**

					*	Show	the	form	for	editing	the	specified	resource.

					*

					*	@param		int		$id

					*	@return	\Illuminate\Http\Response

					*/

				public	function	edit($id)	{}

				/**

					*	Update	the	specified	resource	in	storage.

					*

					*	@param		\Illuminate\Http\Request		$request

					*	@param		int		$id

					*	@return	\Illuminate\Http\Response

					*/

				public	function	update(Request	$request,	$id)	{}

				/**

					*	Remove	the	specified	resource	from	storage.

					*

					*	@param		int		$id

					*	@return	\Illuminate\Http\Response

					*/

				public	function	destroy($id)	{}

}

The	docblocks	pretty	much	tell	the	story.	index()	lists	all	of	the	dogs,	show()	lists	a	single
dog,	create()	shows	the	create	view,	store()	stores	a	dog,	edit()	shows	the	edit	view,
update()	updates	a	dog,	and	destroy()	removes	a	dog.

Since	this	is	an	API,	we	can	delete	create()	and	edit()	off	the	bat;	we’re	not	showing	views
here.

Let’s	quickly	make	a	model	and	a	migration	so	we	can	work	with	it:

php	artisan	make:model	Dog	--migration

php	artisan	migrate

Great!	Now	we	can	fill	out	our	controller	methods.

We	can	take	advantage	of	a	great	feature	of	Eloquent	here:	if	you	echo	an	Eloquent	results
collection,	it’ll	automatically	convert	itself	to	JSON	(using	the	__toString()	magic	method,
if	you’re	curious).	That	means	if	you	return	a	collection	of	results	from	a	route,	you’ll	in
effect	be	returning	JSON.

So,	as	Example	13-3	demonstrates,	this	will	be	some	of	the	simplest	code	you’ll	ever	write.

Example	13-3.	A	sample	resource	controller	for	the	Dog	entity
...

class	DogsController	extends	Controller

{

				public	function	index()

				{

								return	Dog::all();

				}

				public	function	store(Request	$request)

				{

								Dog::create($request->all());

				}

				public	function	show($id)

				{

								return	Dog::findOrFail($id);

				}

				public	function	update(Request	$request,	$id)

				{

								$dog	=	Dog::findOrFail($id);

								$dog->update($request->all());

				}

				public	function	destroy($id)

				{

								$dog	=	Dog::findOrFail($id);

								$dog->delete();

				}

}

Example	13-4	shows	how	we	can	link	this	up	in	our	routes	file.

Example	13-4.	Binding	the	routes	for	a	resource	controller
//	Routes.php

Route::group(['prefix'	=>	'api',	'namespace'	=>	'Api',	function	()	{

				Route::resource('dogs',	'DogsController');

}]);

There	you	have	it!	Your	first	RESTful	API	in	Laravel.

Of	course,	we’ll	need	much	more	nuance:	pagination,	sorting,	authentication,	more	defined
response	headers.	But	this	is	the	foundation	of	everything	else.

Reading	and	Sending	Headers
REST	APIs	often	read,	and	send,	non-content	information	using	headers.	For	example,	any
request	to	GitHub’s	API	will	return	headers	detailing	the	current	user ’s	rate	limiting	status:

X-RateLimit-Limit:	5000

X-RateLimit-Remaining:	4987

X-RateLimit-Reset:	1350085394

X-*	HEADERS
You	might	be	wondering	why	the	GitHub	rate	limiting	headers	are	prefixed	with	X-,	especially	if	you	see	them	in
the	context	of	other	headers	returned	with	the	same	request:

HTTP/1.1	200	OK

Server:	nginx

Date:	Fri,	12	Oct	2012	23:33:14	GMT

Content-Type:	application/json;	charset=utf-8

Connection:	keep-alive

Status:	200	OK

ETag:	"a00049ba79152d03380c34652f2cb612"

X-GitHub-Media-Type:	github.v3

X-RateLimit-Limit:	5000

X-RateLimit-Remaining:	4987

X-RateLimit-Reset:	1350085394

Content-Length:	5

Cache-Control:	max-age=0,	private,	must-revalidate

X-Content-Type-Options:	nosniff

Any	header	whose	name	starts	with	X-	is	a	header	that’s	not	in	the	HTTP	spec.	It	might	be	entirely	made	up	(e.g.,
X-How-Much-Matt-Loves-This-Page),	or	part	of	a	common	convention	that	hasn’t	made	it	into	the	spec	yet	(e.g.,
X-Requested-With).

Similarly,	many	APIs	allow	developers	to	customize	their	requests	using	request	headers.	For
example,	GitHub’s	API	makes	it	easy	to	define	which	version	of	the	API	you’d	like	to	use	with
the	Accept	header:

Accept:	application/vnd.github.v3+json

If	you	were	to	change	v3	to	v2,	GitHub	would	pass	your	request	to	version	2	of	its	API
instead.

Let’s	learn	quickly	how	to	do	both	in	Laravel.

Sending	Response	Headers	in	Laravel
We	already	covered	this	topic	quite	a	bit	in	Chapter	10,	but	here’s	a	quick	refresher.	Once	you
have	a	response	object,	you	can	add	a	header	using	header($headerName,	$headerValue),
as	seen	in	Example	13-5.

Example	13-5.	Adding	a	response	header	in	Laravel
Route::get('dogs',	function	()	{

				return	response(Dog::all())

								->header('X-Greatness-Index',	9);

});

Nice	and	easy.

Reading	Request	Headers	in	Laravel
If	we	have	an	incoming	request,	it’s	also	simple	to	read	any	given	header.	Example	13-6
illustrates	this.

Example	13-6.	Reading	a	request	header	in	Laravel
Route::get('dogs',	function	(Request	$request)	{

				echo	$request->header('Accept');

});

Now	that	you	can	read	incoming	request	headers	and	set	headers	on	your	API	responses,	let’s
take	a	look	at	how	you	might	want	to	customize	your	API.

Eloquent	Pagination
Pagination	is	one	of	the	first	places	where	most	APIs	need	to	consider	special	instructions.
Eloquent	comes	out	of	the	box	with	a	pagination	system	that	hooks	directly	into	the	query
parameters	of	any	page	request.	We	already	covered	the	paginator	component	a	bit	in
Chapter	5,	but	here’s	a	quick	refresher.

Any	Eloquent	call	provides	a	paginate()	method,	which	you	can	pass	the	number	of	items
you’d	like	to	return	per	page.	Eloquent	then	checks	the	URL	for	a	page	query	parameter	and,
if	it’s	set,	treats	that	as	an	indicator	of	how	many	pages	the	user	is	into	a	paginated	list.

To	make	your	API	route	ready	for	automated	Laravel	pagination,	use	paginate()	instead	of
all()	or	get()	in	your	route;	something	like	Example	13-7.

Example	13-7.	A	paginated	API	route
Route::get('dogs',	function	()	{

				return	Dog::paginate(20);

});

We’ve	defined	that	Eloquent	should	get	20	results	from	the	database.	Depending	on	what	the
page	query	parameter	is	set	to,	Laravel	will	know	exactly	which	20	results	to	pull	for	us:

GET	/dogs								-	Return	results	1-20

GET	/dogs?page=1	-	Return	results	1-20

GET	/dogs?page=2	-	Return	results	21-40

Note	that	the	paginate()	method	is	also	available	on	query	builder	calls,	as	seen	in
Example	13-8.

Example	13-8.	Using	the	paginate()	method	on	a	query	builder	call
Route::get('dogs',	function	()	{

				return	DB::table('dogs')->paginate(20);

});

Here’s	something	interesting,	though:	this	isn’t	just	going	to	return	20	results	when	you
convert	it	to	JSON.	Instead,	it’s	going	to	build	a	response	object	that	automatically	passes
some	useful	pagination-related	details	to	the	end	user,	along	with	the	paginated	data.
Example	13-9	shows	a	possible	response	from	our	call,	truncated	to	only	three	records	to
save	space.

Example	13-9.	Sample	output	from	a	paginated	database	call
{

			"total":	50,

			"per_page":	3,

			"current_page":	1,

			"last_page":	17,

			"next_page_url":	"http://myapp.com/api/dogs?page=2",

			"prev_page_url":	null,

			"from":	1,

			"to":	3,

			"data":	[

								{

												'name':	'Fido'

								},

								{

												'name':	'Pickles'

								},

								{

												'name':	'Spot'

								}

]

}

Sorting	and	Filtering
While	there	is	a	convention	and	some	built-in	tooling	for	pagination	in	Laravel,	there	isn’t
any	for	sorting,	so	you	have	to	figure	that	out	on	your	own.	I’ll	give	a	quick	code	sample
here,	and	I’ll	style	our	query	parameters	similarly	to	the	JSON	API	spec	(described	in	the
following	sidebar).

THE	JSON	API	SPEC

The	JSON	API	is	a	standard	for	how	to	handle	many	of	the	most	common	tasks	in	building	JSON-based	APIs:	filtering,
sorting,	pagination,	authentication,	embedding,	links,	metadata,	and	more.

Laravel’s	default	pagination	doesn’t	work	exactly	according	to	the	JSON	API	spec,	but	it	gets	you	started	in	the	right
direction.	And	the	majority	of	the	rest	of	the	JSON	API	spec	is	something	you’ll	just	have	to	choose	(or	not)	to	implement
manually.

For	example,	here’s	a	piece	of	the	JSON	API	spec	that	helpfully	handles	how	to	structure	data	versus	error	returns:

A	document	MUST	contain	at	least	one	of	the	following	top-level	members:

data:	the	document’s	“primary	data”

errors:	an	array	of	error	objects

meta:	a	meta	object	that	contains	non-standard	meta-information.

The	members	data	and	errors	MUST	NOT	coexist	in	the	same	document.

Be	warned,	however:	it’s	wonderful	to	have	the	JSON	API	as	a	spec,	but	it	also	takes	quite	a	bit	of	groundwork	to	get
running	with	it.	We	won’t	use	it	entirely	in	these	examples,	but	I’ll	use	its	general	ideas	as	inspiration.

http://jsonapi.org/

Sorting	Your	API	Results
First,	let’s	set	up	the	ability	to	sort	our	results.	We	start	in	Example	13-10	with	the	ability	to
sort	by	only	a	single	column,	and	in	only	a	single	direction.

Example	13-10.	Simplest	API	sorting
//	Handles	/dogs?sort=name

Route::get('dogs',	function	(Request	$request)	{

				//	Get	the	sort	query	parameter	(or	fall	back	to	default	sort	"name")

				$sortCol	=	$request->input('sort',	'name');

				return	Dog::orderBy($sortCol)->paginate(20);

});

We	add	the	ability	to	invert	it	(e.g.,	?sort=-weight)	in	Example	13-11.

Example	13-11.	Single-column	API	sorting,	with	direction	control
//	Handles	/dogs?sort=name	and	/dogs?sort=-name

Route::get('dogs',	function	(Request	$request)	{

				//	Get	the	sort	query	parameter	(or	fall	back	to	default	sort	"name")

				$sortCol	=	$request->input('sort',	'name');

				//	Set	the	sort	direction	based	on	whether	the	key	starts	with	-

				//	using	Laravel's	starts_with()	helper	function

				$sortDir	=	starts_with($sortCol,	'-')	?	'desc'	:	'asc';

				$sortCol	=	ltrim($sort,	'-');

				return	Dog::orderBy($sortCol,	$sortDir)

								->paginate(20);

});

Finally,	we	do	the	same	for	multiple	columns	(e.g.,	?sort=name,-weight)	in	Example	13-12.

Example	13-12.	JSON	API–style	sorting
//	Handles	?sort=name,-weight

Route::get('dogs',	function	(Request	$request)	{

				//	Grab	the	query	parameter	and	turn	it	into	an	array	exploded	by	,

				$sorts	=	explode(',',	$request->input('sort',	''));

				//	Create	a	query

				$query	=	Dog::query();

				//	Add	the	sorts	one	by	one

				foreach	($sorts	as	$sortCol)	{

								$sortDir	=	starts_with($sortCol,	'-')	?	'desc'	:	'asc';

								$sortCol	=	ltrim($sort,	'-');

								$query->orderBy($sortCol,	$sortDir);

				}

				//	Return

				return	$query->paginate(20);

});

As	you	can	see,	it’s	not	the	simplest	process	ever,	and	you’ll	likely	want	to	build	some	helper
tooling	around	the	repetitive	processes,	but	we’re	building	up	the	customizability	of	our	API
piece	by	piece	using	logical	and	simple	features.

Filtering	Your	API	Results
Another	common	task	in	building	APIs	is	filtering	out	all	but	a	certain	subset	of	data.	For
example,	the	client	might	ask	for	a	list	of	the	dogs	that	are	female.

The	JSON	API	doesn’t	give	us	any	great	ideas	for	syntax	here,	other	than	that	we	should	use
the	filter	query	parameter.	Let’s	think	along	the	lines	of	the	sort	syntax,	where	we’re	putting
everything	into	a	single	key	—	maybe	?filter=sex:female.	You	can	see	how	to	do	this	in
Example	13-13.

Example	13-13.	Single	filter	on	API	results
Route::get('dogs',	function	(Request	$request)	{

				$query	=	Dog::query();

				if	($request->has('filter'))	{

								list($criteria,	$value)	=	explode(':',	$request->input('filter'));

								$query->where($criteria,	$value);

				}

				return	$query->paginate(20);

});

And,	just	for	kicks,	in	Example	13-14	we	allow	for	multiple	filters,	like	?
filter=sex:female,color:brown.

Example	13-14.	Multiple	filters	on	API	results
Route::get('dogs',	function	(Request	$request)	{

				$query	=	Dog::query();

				if	($request->has('filter'))	{

								$filters	=	explode(',',	$request->input('filter'));

								foreach	($filters	as	$filter)	{

												list($criteria,	$value)	=	explode(':',	$filter);

												$query->where($criteria,	$value);

								}

				}

				return	$query->paginate(20);

});

Transforming	Results
We’ve	covered	how	to	sort	and	filter	our	result	sets.	But	right	now,	we’re	relying	on
Eloquent’s	JSON	serialization,	which	means	we	get	every	field	on	every	model.

Eloquent	provides	a	few	convenience	tools	for	defining	which	fields	to	show	when	you’re
serializing	an	array.	You	can	read	more	in	Chapter	8,	but	the	gist	is	that	if	you	set	a	$hidden
array	property	on	your	Eloquent	class,	any	field	listed	in	that	array	will	not	be	shown	in	the
serialized	model	output.	You	can	alternatively	set	a	$visible	array	that	defines	the	fields	that
are	allowed	to	be	shown.	You	could	also	either	overwrite	or	mimic	the	toArray()	function	on
your	model,	crafting	a	custom	output	format.

Another	common	pattern	is	to	create	a	transformer	for	each	data	type.	There’s	a	fantastic
package	for	this,	Fractal,	that	sets	up	a	series	of	convenience	structures	and	classes	for
transforming	your	data,	but	let’s	cover	a	simple	implementation	to	show	what	a	transformer
is	and	why	you	might	want	to	do	this.

http://bit.ly/2fEt8Nr

Writing	Your	Own	Transformer
The	general	concept	of	a	transformer	is	that	we	are	going	to	run	every	instance	of	our	model
through	another	class	that	transforms	its	data	to	a	different	state.	It	might	add	fields,	rename
fields,	delete	fields,	manipulate	fields,	add	nested	children,	or	whatever	else.	Let’s	start	with	a
simple	example	(Example	13-15).

Example	13-15.	A	simple	transformer
Route::get('users/{id}',	function	($userId)	{

				return	(new	UserTransformer(User::findOrFail($userId)));

});

class	UserTransformer

{

				protected	$user;

				public	function	__construct($user)

				{

								$this->user	=	$user;

				}

				public	function	toArray()

				{

								return	[

												'id'	=>	$this->user->id,

												'name'	=>	sprintf(

																"%s	%s",

																$this->user->first_name,

																$this->user->last_name

),

												'friendsCount'	=>	$this->user->friends->count()

];

				}

				public	function	toJson()

				{

								return	json_encode($this->toArray());

				}

				public	function	__toString()

				{

								return	$this->toJson();

				}

}

CLASSIC	TRANSFORMERS
A	more	classic	transformer	would	probably	offer	a	transform()	method	that	takes	a	$user	parameter.	This	would
likely	spit	out	an	array	or	JSON	directly.

However,	I’ve	been	using	this	pattern,	which	we	sometimes	call	“API	objects,”	for	a	few	years	and	really	love
how	much	more	power	and	flexibility	it	provides.

As	you	can	see	in	Example	13-15,	transformers	accept	the	model	they’re	transforming	as	a
parameter	and	then	manipulate	that	model	—	and	its	relationships	—	to	create	the	final	output
that	you	want	to	send	to	the	API.

This	gives	you	more	control,	isolates	API-specific	logic	away	from	the	model	itself,	and
allows	you	to	provide	a	more	consistent	API	even	when	the	models	and	their	relationships
change	down	the	road.

Nesting	and	Relationships
Whether,	and	how,	to	nest	relationships	in	APIs	is	an	issue	of	much	debate.	Thankfully,	people
more	experienced	than	me	have	written	on	this	at	length;	I’d	recommend	reading	Phil
Sturgeon’s	Build	APIs	You	Won’t	Hate	(Leanpub)	to	learn	more	about	this	and	about	REST
APIs	in	general.

There	are	a	few	primary	ways	to	approach	nesting	relationships.	These	examples	will	assume
your	primary	resource	is	a	user	and	your	related	resource	is	a	friend:

Embed	related	resources	directly	in	the	primary	resource	(e.g.,	the	users/5	resource	has
its	friends	nested	in	it).

Embed	just	the	foreign	keys	in	the	primary	resource	(e.g.,	the	users/5	resource	has	an
array	of	friend	IDs	nested	in	it).

Allow	the	user	to	query	the	related	resource	filtered	by	the	originating	resource	(e.g.,
/friends?user=5,	or	“give	me	all	friends	who	are	related	to	user	#5”).

Create	a	subresource	(e.g.,	/users/5/friends).

Allow	optional	embedding	(e.g.,	/users/5	does	not	embed,	but	/users/5?embed=friends
does	embed;	so	does	/users/5?embed=friends,dogs).

Let’s	assume	for	a	minute	that	we	want	to	(optionally)	embed	the	relationships.	How	would	we
do	that?	Our	transformer	example	in	Example	13-15	gives	us	a	great	head	start.	Let’s	adjust	it
in	Example	13-16	to	add	optional	embedding.

Example	13-16.	Allowing	for	optional	embedding	of	a	resource	in	a	transformer
Route::get('users/{id}',	function	($userId,	Request	$request)	{

				//	Get	the	embeds	query	parameter	and	split	by	commas

				$embeds	=	explode(',',	$request->input('embed',	''));

				//	Pass	both	user	and	embeds	to	the	user	transformer

				return	(new	UserTransformer(User::findOrFail($userId),	$embeds));

});

class	UserTransformer

{

				protected	$user;

				protected	$embeds;

				public	function	__construct($user,	$embeds	=	[])

				{

								$this->user	=	$user;

								$this->embeds	=	$embeds;

				}

				public	function	toArray()

				{

								$append	=	[];

								if	(in_array('friends',	$this->embeds))	{

												//	If	you	have	more	than	one	embed,	you'll	want	to	generalize	this

												$append['friends']	=	$this->user->friends->map(function	($friend)	{

																return	(new	FriendTransformer($friend))->toArray();

												});

								}

https://apisyouwonthate.com/

								return	array_merge([

												'id'	=>	$this->user->id,

												'name'	=>	sprintf(

																"%s	%s",

																$this->user->first_name,

																$this->user->last_name

)

],	$append);

				}

...

We’ll	learn	more	about	the	map()	functionality	when	we	look	at	collections	in	Chapter	17,	but
everything	else	in	here	should	be	pretty	familiar.

In	the	route,	we’re	splitting	the	embed	query	parameter	by	commas	and	passing	it	into	our
transformer.	Currently	our	transformer	can	just	handle	the	friends	embed,	but	it	could	be
abstracted	to	handle	others.	If	the	user	has	requested	the	friends	embed,	the	transformer	maps
over	each	friend	(using	the	has	many	friends	relationship	on	the	user	model),	passes	that
friend	to	the	FriendTransformer,	and	embeds	the	array	of	all	transformed	friends	in	the
user	response.

API	Authentication	with	Laravel	Passport
Most	APIs	require	some	form	of	authentication	to	access	some	or	all	of	the	data.	Laravel	5.2
introduced	a	simple	“token”	authentication	scheme,	which	we’ll	cover	shortly,	but	in	Laravel
5.3	we	got	a	new	tool	called	Passport	(by	way	of	a	separate	package,	brought	in	via
Composer)	that	makes	it	easy	to	set	up	a	full-featured	OAuth	2.0	server	in	your	application,
complete	with	an	API	and	UI	components	for	managing	clients	and	tokens.	Passport	and	the
features	it	relies	on	are	only	compatible	with	Laravel	5.3	and	above.

A	Brief	Introduction	to	OAuth	2.0
OAuth	is	by	far	the	most	common	auth	system	used	in	RESTful	APIs.	Unfortunately,	it’s	far
too	complex	a	topic	for	us	to	cover	here	in	depth.	For	further	reading,	Matt	Frost	has	written	a
great	book	on	OAuth	and	PHP	titled	Integrating	Web	Services	with	OAuth	and	PHP
(php[architect]).

If	you’re	working	with	Laravel	5.1	or	5.2,	there’s	a	Laravel	package	called	OAuth	2.0	Server
for	Laravel	that	makes	it	relatively	easy	to	add	a	basic	OAuth	2.0	authentication	server	to	your
Laravel	application.	It’s	a	Laravel	convenience	bridge	to	a	PHP	package	called	PHP	OAuth	2.0
Server.

However,	if	you’re	on	Laravel	5.3,	Passport	gives	you	everything	provided	by	that	package
and	much	more,	with	a	simpler	and	more	powerful	API	and	interface.

http://bit.ly/2e2lFYi
http://bit.ly/2f1dUyP

Installing	Passport
Passport	is	a	separate	package,	so	your	first	step	is	to	install	it.	I’ll	sum	up	the	steps	here,	but
you	can	get	more	in-depth	installation	instructions	in	the	docs.

First,	bring	it	in	with	Composer:

composer	require	laravel/passport

Next,	add	Laravel\Passport\PassportServiceProvider::class	to	the	providers	array	of
config/app.php.	This	will	make	Passport	boot	up	every	time	your	app	loads.

Passport	imports	a	series	of	migrations,	so	run	those	with	php	artisan	migrate	to	create	the
tables	necessary	for	OAuth	clients,	scopes,	and	tokens.

Next,	run	the	installer	with	php	artisan	passport:install.	This	is	going	to	create
encryption	keys	for	the	OAuth	server	(storage/oauth-private.key	and	storage/oauth-
public.key)	and	insert	OAuth	clients	into	the	database	for	our	personal	and	password	grant
type	tokens	(which	we’ll	cover	later).

You’ll	need	to	import	the	Laravel\Passport\HasApiTokens	trait	into	your	User	model;	this
will	add	OAuth	client-	and	token-related	relationships	to	each	User,	as	well	as	a	few	token-
related	helper	methods.	Next,	add	a	call	to	Laravel\Passport\Passport::routes()	in	the
boot()	method	of	the	AuthServiceProvider.	This	will	add	the	following	routes:

oauth/authorize

oauth/clients

oauth/clients/{client_id}

oauth/personal-access-tokens

oauth/personal-access-tokens/{token_id}

oauth/scopes

oauth/token

oauth/token/refresh

oauth/tokens

oauth/tokens/{token_id}

Finally,	look	for	the	api	guard	in	config/auth.php.	By	default	this	guard	will	use	the	token
driver	(which	we’ll	cover	shortly),	but	we’ll	change	that	to	be	the	passport	driver	instead.

http://bit.ly/2fEBjtk

You	now	have	a	fully	functional	OAuth	2.0	server!	You	can	create	new	clients	with	php
artisan	passport:client,	and	you	have	an	API	for	managing	your	clients	and	tokens
available	under	the	/oauth	route	prefix.

To	protect	a	route	behind	your	Passport	auth	system,	add	the	auth:api	middleware	to	the
route	or	route	group,	as	shown	in	Example	13-17.

Example	13-17.	Protecting	an	API	route	with	the	Passport	auth	middleware
//	routes/api.php

Route::get('/user',	function	(Request	$request)	{

				return	$request->user();

})->middleware('auth:api');

In	order	to	authenticate	to	these	protected	routes,	your	client	apps	will	need	to	pass	a	token
(we’ll	cover	how	to	get	one	next)	as	a	Bearer	token	in	the	Authorization	header.	Example	13-
18	shows	what	this	would	look	like	if	you	were	making	a	request	using	the	Guzzle	HTTP
library.

Example	13-18.	Making	a	sample	API	request	with	a	Bearer	token
$http	=	new	GuzzleHttp\Client;

$response	=	$http->request('GET',	'http://speakr.dev/api/user',	[

				'headers'	=>	[

								'Accept'	=>	'application/json',

								'Authorization'	=>	'Bearer	'	.	$accessToken,

],

]);

Now,	let’s	learn	a	little	more	about	how	it	all	works.

Passport’s	API
Passport	exposes	an	API	in	your	application	under	the	/oauth	route	prefix.	The	API	provides
two	primary	functions:	first,	to	authorize	users	with	OAuth	2.0	authorization	flows
(/oauth/authorize	and	/oauth/token),	and	second,	to	allow	users	to	manage	their	clients	and
tokens	(the	rest	of	the	routes).

This	is	an	important	distinction,	especially	if	you’re	unfamiliar	with	OAuth.	Every	OAuth
server	needs	to	expose	the	ability	for	consumers	to	authenticate	with	your	server;	that’s	the
entire	point	of	the	service.	But	Passport	also	exposes	an	API	for	managing	the	state	of	your
OAuth	server ’s	clients	and	tokens.	This	means	you	can	easily	build	a	frontend	to	let	your
users	manage	their	information	in	your	OAuth	application,	and	Passport	actually	comes	with
Vue-based	manager	components	that	you	can	either	use	or	use	for	inspiration.

We’ll	cover	the	API	routes	that	allow	you	to	manage	clients	and	tokens,	and	the	Vue
components	that	Passport	ships	with	to	make	it	easy,	but	first	let’s	dig	into	the	various	ways
your	users	can	authenticate	with	your	Passport-protected	API.

Passport’s	Available	Grant	Types
Passport	makes	it	possible	for	you	to	authenticate	users	in	four	different	ways.	Two	are
traditional	OAuth	2.0	grants	(the	password	grant	and	authorization	code	grant)	and	two	are
convenience	methods	that	are	unique	to	Passport	(the	personal	token	and	synchronizer	token).

Password	grant
The	password	grant,	while	less	common	than	the	authorization	code	grant,	is	much	simpler.	If
you	want	users	to	be	able	to	authenticate	directly	with	your	API	using	their	username	and
password	—	for	example,	if	you	have	a	mobile	app	for	your	company	consuming	your	own
API	—	you	can	use	the	password	grant.

CREATING	A	PASSWORD	GRANT	CLIENT
In	order	to	use	the	password	grant	flow,	you	need	a	password	grant	client	in	your	database.	One	will	have	been
added	when	you	ran	php	artisan	passport:install,	but	if	you	ever	need	to	generate	a	new	password	grant
client	for	any	reason,	you	can:

php	artisan	passport:client	--password

	What	should	we	name	the	password	grant	client?

			[My	Application	Password	Grant	Client]:

	>	SpaceBook_internal

Password	grant	client	created	successfully.

With	the	password	grant	type,	there	is	just	one	step	to	getting	a	token:	sending	the	user ’s
credentials	to	the	/oauth/token	route,	like	in	Example	13-19.

Example	13-19.	Making	a	request	with	the	password	grant	type
//	Assuming	SpaceBook	is	not	an	external	app,	but	actually

//	a	trusted	internal	app...	this	is	SpaceBook's	routes/web.php

Route::get('speakr/password-grant-auth',	function	()	{

				$http	=	new	GuzzleHttp\Client;

				$response	=	$http->post('http://speakr.dev/oauth/token',	[

								'form_params'	=>	[

												'grant_type'	=>	'password',

												'client_id'	=>	config('speakr.id'),

												'client_secret'	=>	config('speakr.secret'),

												'username'	=>	'matt@mattstauffer.co',

												'password'	=>	'my-speakr-password',

],

]);

				$thisUsersTokens	=	json_decode((string)	$response->getBody(),	true);

				//	do	stuff	with	the	tokens

});

This	route	will	return	an	access_token	and	a	refresh_token.	You	can	now	save	those	tokens
to	use	to	authenticate	with	the	API	(access	token)	and	to	request	more	tokens	later	(refresh
token).

Note	that	the	ID	and	secret	we’d	use	for	the	password	grant	type	would	be	those	in	the	clients
database	table	of	our	Passport	app	in	the	row	with	the	name	SpaceBook_internal.

Authorization	code	grant
The	most	common	OAuth	2.0	auth	workflow	is	also	the	most	complex	one	Passport	supports.
Let’s	imagine	we’re	developing	an	application	that’s	like	Twitter	but	for	sound	clips;	we’ll
call	it	Speakr.	And	we’ll	imagine	another	website,	a	social	network	for	science	fiction	fans,
called	SpaceBook.	SpaceBook’s	developer	wants	to	let	people	embed	their	Speakr	data	into
their	SpaceBook	newsfeeds.	We’re	going	to	install	Passport	in	our	app	so	that	other	apps	—
SpaceBook,	for	example	—	can	allow	their	mutual	users	to	authenticate	with	their	Speakr
information.

In	the	authorization	code	grant	type,	each	consuming	website	—	SpaceBook,	in	this	example
—	needs	to	create	a	“client”	in	our	Passport-enabled	app.	In	most	scenarios,	the	other	sites’
admins	will	have	user	accounts	at	Speakr,	and	we’ll	build	tools	for	them	to	create	clients
there.	But	for	starters,	we	can	just	manually	create	a	client	for	the	SpaceBook	admins:

php	artisan	passport:client

Which	user	ID	should	the	client	be	assigned	to?:

	>	1	

	What	should	we	name	the	client?:

	>	SpaceBook

	Where	should	we	redirect	the	request	after	authorization?

			[http://passport.dev/auth/callback]:

	>	http://spacebook.dev/auth/callback

	New	client	created	successfully.

	Client	ID:	3

	Client	secret:	RiQstsWDqd9SqQY3lQhiZF50ulKdw4iPhPAdkeO3

Every	client	needs	to	be	assigned	to	a	user	in	your	app.	Imagine	Jill,	user	#1,	is	writing
SpaceBook;	she’ll	be	the	“owner”	of	this	client	we’re	creating.

Now	we	have	the	ID	and	secret	for	the	SpaceBook	client.	At	this	point,	SpaceBook	can	use	this
ID	and	secret	to	build	tooling	allowing	an	individual	SpaceBook	user	(who	is	also	a	Speakr
user)	to	get	an	auth	token	from	Speakr	for	use	when	SpaceBook	wants	to	make	API	calls	to
Speakr	on	that	user ’s	behalf.	Example	13-20	illustrates	this.	(This	and	the	following	examples
assume	SpaceBook	is	a	Laravel	app,	too;	they	also	assume	we’ve	created	a	file	at
config/speakr.php	that	returns	the	ID	and	secret	we	just	created.)

Example	13-20.	A	consumer	app	redirecting	a	user	to	our	OAuth	server
//	In	SpaceBook's	routes/web.php:

Route::get('speakr/redirect',	function	()	{

				$query	=	http_build_query([

								'client_id'	=>	config('speakr.id'),

								'redirect_uri'	=>	url('speakr/callback'),

								'response_type'	=>	'code',

]);

				//	Builds	a	string	like:

				//	client_id={$client_id}&redirect_uri={$redirect_uri}&response_type=code

				return	redirect('http://speakr.dev/oauth/authorize?'	.	$query);

});

When	users	hit	that	route	in	SpaceBook,	they’ll	now	be	redirected	to	the	/oauth/authorize
Passport	route	on	our	Speakr	app.	At	this	point	they’ll	see	a	confirmation	page;	you	can	use
the	default	Passport	confirmation	page	by	running	this	command:

php	artisan	vendor:publish	--tag=passport-views

This	will	publish	the	view	to	resources/views/vendor/passport/authorize.blade.php,	and	your
users	will	see	the	page	shown	in	Figure	13-1.

Figure	13-1.	OAuth	authorization	code	approval	page

Once	a	user	chooses	to	accept	or	reject	the	authorization,	Passport	will	redirect	that	user	back
to	the	provided	redirect_uri.	In	Example	13-20	we	set	a	redirect_uri	of
url('speakr/callback'),	so	the	user	will	be	redirected	back	to
http://spacebook.dev/speakr/callback.

An	approval	request	will	contain	a	code	that	our	consumer	app’s	callback	route	can	now	use
to	get	a	token	back	from	our	Passport-enabled	app,	Speakr.	A	rejection	request	will	contain	an
error.	SpaceBook’s	callback	route	might	look	something	like	Example	13-21.

Example	13-21.	The	authorization	callback	route	in	our	sample	consuming	app
//	In	SpaceBook's	routes/web.php:

Route::get('speakr/callback',	function	(Request	$request)	{

				if	($request->has('error'))	{

								//	handle	error	condition

				}

				$http	=	new	GuzzleHttp\Client;

				$response	=	$http->post('http://speakr.dev/oauth/token',	[

								'form_params'	=>	[

												'grant_type'	=>	'authorization_code',

												'client_id'	=>	config('speakr.id'),

												'client_secret'	=>	config('speakr.secret'),

												'redirect_uri'	=>	url('speakr/callback'),

												'code'	=>	$request->code,

],

]);

				$thisUsersTokens	=	json_decode((string)	$response->getBody(),	true);

				//	do	stuff	with	the	tokens

});

What	we’re	doing	here	is	building	a	Guzzle	HTTP	request	to	the	/oauth/token	Passport	route
on	Speakr.	We	send	a	POST	request	containing	the	authorization	code	we	received	when	the
user	approved	access,	and	Speakr	will	return	a	JSON	response	containing	a	few	keys:

access_token	is	the	token	SpaceBook	will	want	to	save	for	this	user.	This	token	is	what
the	user	will	use	to	authenticate	in	future	requests	to	Speakr.

refresh_token	is	a	token	SpaceBook	will	need	if	you	decide	to	set	your	tokens	to	expire.

By	default,	Passport’s	access	tokens	never	need	to	be	refreshed,	so	you	don’t	need	to
concern	yourself	with	this	and	can	just	ignore	it.

expires_in	is	the	number	of	seconds	until	an	access_token	expires	(needs	to	be
refreshed).

USING	REFRESH	TOKENS

If	you’d	like	to	force	users	to	reauthenticate	more	often,	you	need	to	set	a	shorter	refresh	time	on	the	tokens,	and	then
you	can	use	the	refresh_token	to	request	a	new	access_token.

To	set	a	shorter	refresh	time:

//	AuthServiceProvider's	boot()	method

public	function	boot()

{

				$this->registerPolicies();

				Passport::routes();

				//	How	long	a	token	lasts	before	needing	refreshing

				Passport::tokensExpireIn(

								Carbon::now()->addDays(15)

);

				//	How	long	a	refresh	token	will	last	before	re-auth

				Passport::refreshTokensExpireIn(

								Carbon::now()->addDays(30)

);

}

To	request	a	new	token	using	a	refresh	token,	you	need	to	have	first	saved	the	refresh_token	from	the	initial	auth
response	in	Example	13-21.	Once	it’s	time	to	refresh,	you’ll	make	a	call	similar	to	that	example,	but	modified	slightly:

//	In	SpaceBook's	routes/web.php:

Route::get(

				'speakr/request-refresh',

				function	(Request	$request)	{

								$http	=	new	GuzzleHttp\Client;

								$params	=	[

												'grant_type'	=>	'refresh_token',

												'client_id'	=>	config('speakr.id'),

												'client_secret'	=>	config('speakr.secret'),

												'redirect_uri'	=>	url('speakr/callback'),

												'refresh_token'	=>	$theTokenYouSavedEarlier,

];

								$response	=	$http->post(

												'http://speakr.dev/oauth/token',

												['form_params'	=>	$params,]

);

								$thisUsersTokens	=	json_decode(

												(string)	$response->getBody(),

												true

);

								//	do	stuff	with	the	tokens

				}

);

In	the	response,	you’ll	receive	a	fresh	set	of	tokens	to	save	to	your	user.

You	now	have	all	the	tools	you	need	to	perform	basic	authorization	code	flows.	We’ll	cover
how	to	build	an	admin	panel	for	your	clients	and	tokens	later,	but	first,	let’s	take	a	quick	look
at	the	other	grant	types.

Personal	access	tokens
The	authorization	code	grant	is	great	for	your	users’	apps	and	the	password	code	grant	is
great	for	your	own	apps,	but	what	if	your	users	want	to	create	tokens	for	themselves	to	test
out	your	API	or	to	use	when	they’re	developing	their	apps?	That’s	what	personal	tokens	are
for.

CREATING	A	PERSONAL	ACCESS	CLIENT
In	order	to	create	personal	tokens,	you	need	a	personal	access	client	in	your	database.	Running	php	artisan
passport:install	will	have	added	one	already,	but	if	you	ever	need	to	generate	a	new	personal	access	client	for
any	reason,	you	can	run	php	artisan	passport:client	--personal:

php	artisan	passport:client	--personal

	What	should	we	name	the	password	grant	client?

			[My	Application	Personal	Access	Client]:

	>	My	Application	Personal	Access	Client

Personal	access	client	created	successfully.

Personal	access	tokens	are	not	quite	a	“grant”	type;	there’s	no	OAuth-prescribed	flow	here.
Rather,	they’re	a	convenience	method	that	Passport	adds	to	make	it	easy	to	have	a	single	client
registered	in	your	system	that	exists	solely	for	the	easy	creation	of	convenience	tokens	for
your	users	who	are	developers.

For	example,	maybe	you	have	a	user	who’s	developing	a	competitor	to	SpaceBook	named
RaceBook	(it’s	for	marathon	runners),	and	he	wants	to	toy	around	with	the	Speakr	API	a	bit	to
figure	out	how	it	works	before	starting	to	code.	Does	this	developer	have	the	facility	to	create
tokens	using	the	authorization	code	flow?	Not	yet	—	he	hasn’t	even	written	any	code	yet!
That’s	what	personal	access	tokens	are	for.

You	can	create	personal	access	tokens	through	the	JSON	API,	which	I’ll	cover	shortly,	but
you	can	also	create	one	for	your	user	directly	in	code:

//	Creating	a	token	without	scopes

$token	=	$user->createToken('Token	Name')->accessToken;

//	Creating	a	token	with	scopes...

$token	=	$user->createToken('My	Token',	['place-orders'])->accessToken;

Your	users	can	use	these	tokens	just	as	if	they	were	tokens	created	with	the	authorization	code
grant	flow.

Tokens	from	Laravel	session	authentication	(synchronizer	tokens)
There’s	one	final	way	for	your	users	to	get	tokens	to	access	your	API,	and	it’s	another
convenience	method	that	Passport	adds	but	which	normal	OAuth	servers	don’t	provide.	This
method	is	for	when	your	users	are	already	authenticated	because	they’ve	logged	in	to	your
Laravel	app	like	normal,	and	you	want	the	JavaScript	on	your	Laravel	app	to	be	able	to	access
the	API.	It’d	be	a	pain	to	have	to	reauthenticate	the	users	with	the	authorization	code	or
password	grant	flow,	so	Laravel	provides	a	helper	for	that.

If	you	add	the	Laravel\Passport\Http\Middleware\CreateFreshApiToken	middleware	to
your	web	middleware	group	(in	app/Http/Kernel.php),	every	response	Laravel	sends	to	your

authenticated	users	will	have	a	cookie	named	laravel_token	attached	to	it.	This	cookie	is	a
JSON	Web	Token	(JWT)	that	contains	encoded	information	about	the	CSRF	token.	Now,	if
you	send	the	normal	CSRF	token	with	your	JavaScript	and	send	it	along	in	the	X-CSRF-TOKEN
header	on	any	API	requests	you	make,	the	API	will	compare	your	CSRF	token	with	this
cookie	and	this	will	authenticate	your	users	to	the	API	just	like	any	other	token.

JSON	WEB	TOKENS	(JWT)

JWT	is	a	newer	format	that	is	just	beginning	to	gain	prominence.	A	JSON	Web	Token	is	a	JSON	object	containing	all	of
the	information	necessary	to	determine	a	user’s	authentication	state	and	access	permissions.	This	JSON	object	is	digitally
signed	using	a	keyed-hash	message	authentication	code	(HMAC)	or	RSA,	which	is	what	makes	it	trustworthy.

The	token	is	usually	encoded	and	then	delivered	via	URL,	POST	request,	or	in	a	header.	Once	a	user	authenticates	with
the	system	somehow,	every	HTTP	request	after	that	will	contain	the	token,	describing	the	user’s	identity	and
authorization.

JSON	Web	Tokens	consist	of	three	Base64-encoded	strings	separated	by	dots	(.);	something	like	xxx.yyy.zzz.	The	first
section	is	a	Base64-encoded	JSON	object	containing	information	about	which	hashing	algorithm	is	being	used;	the	second
section	is	a	series	of	“claims”	about	the	user’s	authorization	and	identity;	and	the	third	is	the	signature,	or	the	first	and
second	sections	encrypted	and	signed	using	the	algorithm	specified	in	the	first	section.

To	learn	more	about	JWT,	check	out	JWT.io	or	the	jwt-auth	Laravel	package.

The	default	Vue	setup	that	Laravel	comes	bundled	with	sets	up	this	header	for	you,	but	if
you’re	using	a	different	framework,	you’ll	need	to	set	it	up	manually.	Example	13-22	shows
how	to	do	it	with	jQuery.

Example	13-22.	Setting	jQuery	to	pass	Laravel’s	CSRF	tokens	with	all	Ajax	requests
$.ajaxSetup({

				headers:	{

								'X-CSRF-TOKEN':	"{{	csrf_token()	}}"

				}

});

If	you	add	the	CreateFreshApiTokens	middleware	to	your	web	middleware	group	and	pass
that	header	with	every	JavaScript	request,	your	JavaScript	requests	will	be	able	to	hit	your
Passport-protected	API	routes	without	worrying	about	any	of	the	complexity	of	the
authorization	code	or	password	grants.

https://jwt.io/
https://github.com/tymondesigns/jwt-auth

Managing	Clients	and	Tokens	with	the	Passport	API	and	the	Vue
Components
Now	that	we’ve	covered	how	to	manually	create	clients	and	tokens	and	how	to	authorize	as	a
consumer,	let’s	take	a	look	at	the	aspects	of	the	Passport	API	that	make	it	possible	to	build
user	interface	elements	allowing	your	users	to	manage	their	clients	and	tokens.

The	routes
The	easiest	way	to	dig	into	the	API	routes	is	by	looking	at	how	the	sample	provided	Vue
components	work	and	which	routes	they	rely	on,	so	I’ll	just	give	a	brief	overview:

/oauth/clients	(GET,	POST)

/oauth/clients/{id}	(DELETE,	PUT)

/oauth/personal-access-tokens	(GET,	POST)

/oauth/personal-access-tokens/{id}	(DELETE)

/oauth/scopes	(GET)

/oauth/tokens	(GET)

/oauth/tokens/{id}	(DELETE)

As	you	can	see,	we	have	a	few	entities	here	(clients,	personal	access	tokens,	scopes,	and
tokens).	We	can	list	all	of	them;	we	can	create	some	(you	can’t	create	scopes,	since	they’re
defined	in	code,	and	you	can’t	create	tokens,	because	they’re	created	in	the	authorization
flow);	and	we	can	delete	and	update	some.

The	Vue	components
Passport	comes	with	a	set	of	Vue	components	out	of	the	box	that	make	it	easy	to	allow	your
users	to	administer	their	clients	(those	they’ve	created),	authorized	clients	(those	they’ve
allowed	access	to	their	account),	and	personal	access	tokens	(for	their	own	testing	purposes).

To	publish	these	components	into	your	application,	run	this	command:

php	artisan	vendor:publish	--tag=passport-components

You’ll	now	have	three	new	Vue	components	in	resources/assets/js/components/passport.	To
add	them	to	your	Vue	bootstrap	so	they’re	accessible	in	your	templates,	register	them	in	your
resources/assets/js/app.js	file	as	shown	in	Example	13-23.

Example	13-23.	Importing	Passport’s	Vue	components	into	app.js
require('./bootstrap');

Vue.component(

				'passport-clients',

				require('./components/passport/Clients.vue')

);

Vue.component(

				'passport-authorized-clients',

				require('./components/passport/AuthorizedClients.vue')

);

Vue.component(

				'passport-personal-access-tokens',

				require('./components/passport/PersonalAccessTokens.vue')

);

const	app	=	new	Vue({

				el:	'body'

});

You	now	get	three	components	that	you	can	use	anywhere	in	your	application:

<passport-clients></passport-clients>

<passport-authorized-clients></passport-authorized-clients>

<passport-personal-access-tokens></passport-personal-access-tokens>

<passport-clients>	shows	your	users	all	of	the	clients	they’ve	created.	This	means
SpaceBook’s	creator	will	see	the	SpaceBook	client	listed	here	when	she	logs	in	to	Speakr.

<passport-authorized-clients>	shows	your	users	all	of	the	clients	they’ve	authorized	to
have	access	to	their	accounts.	This	means	any	users	of	both	SpaceBook	and	Speakr	who	have
given	SpaceBook	access	to	their	Speakr	account	will	see	SpaceBook	listed	here.

<passport-personal-access-tokens>	shows	your	users	any	personal	access	tokens	they’ve
created	here.	This	means	the	creator	of	RaceBook,	the	SpaceBook	competitor,	will	see	his
personal	access	token	here	that	he’s	been	using	to	test	out	the	Speakr	API.

If	you	are	on	a	fresh	install	of	Laravel	and	want	to	test	these	out,	there	are	a	few	steps	to	take
to	get	it	working:

Follow	the	instructions	given	earlier	in	this	chapter	to	get	Passport	installed.

In	your	terminal,	run	the	following	commands:
php	artisan	vendor:publish	--tag=passport-components

npm	install

gulp

php	artisan	make:auth

Open	resources/views/home.blade.php	and	add	the	Vue	component	references	(e.g.,
<passport-clients>)	just	below	the	<div	class="panel">.

If	you’d	like,	you	can	just	use	those	components	as	they	are.	But	you	can	also	use	them	as
reference	points	to	understand	how	to	use	the	API	and	create	your	own	frontend	components
in	whatever	format	you’d	like.

Passport	Scopes
If	you’re	familiar	with	OAuth,	you	probably	noticed	we	haven’t	talked	about	scopes.
Everything	we’ve	covered	so	far	can	be	customized	by	scope,	but	first	let’s	quickly	cover
what	scopes	are.

In	OAuth,	scopes	are	defined	sets	of	privileges	that	are	something	other	than	“can	do
everything.”	If	you’ve	ever	gotten	a	GitHub	API	token	before,	for	example,	you	might’ve
noticed	that	some	apps	want	access	just	to	your	name	and	email	address,	some	want	access	to
all	of	your	repos,	and	some	want	access	to	your	gists.	Each	of	these	is	a	“scope,”	which
allows	both	the	user	and	the	consumer	app	to	define	what	access	the	consumer	app	needs	to
perform	its	job.

As	shown	in	Example	13-24,	you	can	define	the	scopes	for	your	application	in	the	boot()
method	of	your	AuthServiceProvider.

Example	13-24.	Defining	Passport	scopes
//	AuthServiceProvider

use	Laravel\Passport\Passport;

...

				public	function	boot()

				{

								...

								Passport::tokensCan([

												'list-clips'	=>	'List	sound	clips',

												'add-delete-clips'	=>	'Add	new	and	delete	old	sound	clips',

												'admin-account'	=>	'Administer	account	details',

]);

				}

Once	you	have	your	scopes	defined,	the	consumer	app	can	define	which	scopes	it’s	asking	for
access	to.	Just	add	a	space-separated	list	of	tokens	in	the	“token”	field	to	the	initial	redirect,	in
the	scope	field,	as	shown	in	Example	13-25.

Example	13-25.	Requesting	authorization	to	access	specific	scopes
//	In	SpaceBook's	routes/web.php:

Route::get('speakr/redirect',	function	()	{

				$query	=	http_build_query([

								'client_id'	=>	config('speakr.id'),

								'redirect_uri'	=>	url('speakr/callback'),

								'response_type'	=>	'code',

								'scope'	=>	'list-clips	add-delete-clips'

]);

				return	redirect('http://speakr.dev/oauth/authorize?'	.	$query);

});

When	the	user	tries	to	authorize	with	this	app,	it’ll	present	the	list	of	requested	scopes.	This
way,	the	user	will	see	the	difference	between	“SpaceBook	is	requesting	to	see	your	email
address”	and	“SpaceBook	is	requesting	access	to	post	as	you	and	delete	your	posts	and
message	your	friends.”

You	can	check	for	scope	using	middleware	or	on	the	User	instance.

Example	13-26	shows	how	to	check	on	the	User.

Example	13-26.	Checking	whether	the	token	a	user	authenticated	with	can	perform	a	given
action
Route::get('/events',	function	()	{

				if	(auth()->user()->tokenCan('add-delete-clips'))	{

								//

				}

});

There	are	two	middleware	you	can	use	for	this	too,	scope	and	scopes.	To	use	these	in	your
app,	add	them	to	$routeMiddleware	in	your	app/Http/Kernel.php	file:

'scopes'	=>	\Laravel\Passport\Http\Middleware\CheckScopes::class,

'scope'	=>	\Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

You	can	now	use	the	middleware	as	illustrated	in	Example	13-27.	scopes	requires	all	of	the
defined	scopes	to	be	on	the	user ’s	token	in	order	for	the	user	to	access	the	route,	while	scope
requires	at	least	one	of	the	defined	scopes	to	be	on	the	user ’s	token.

Example	13-27.	Using	middleware	to	restrict	access	based	on	token	scopes
//	routes/api.php

Route::get('clips',	function	()	{

				//	Access	token	has	both	the	"list-clips"	and	"add-delete-clips"	scopes

})->middleware('scopes:list-clips,add-delete-clips');

//	or

Route::get('clips',	function	()	{

				//	Access	token	has	at	least	one	of	the	listed	scopes

})->middleware('scope:list-clips,add-delete-clips')

If	you	haven’t	defined	any	scopes,	the	app	will	just	work	as	if	they	don’t	exist.	The	moment
you	use	scopes,	however,	your	consumer	apps	will	have	to	explicitly	define	which	scopes
they’re	requesting	access	with.	The	one	exception	to	this	rule	is	that	if	you’re	using	the
password	grant	type	your	consumer	app	can	request	the	*	scope,	which	gives	the	token	access
to	everything.

Laravel	5.2+	API	Token	Authentication
Laravel	5.2	introduced	a	simple	API	token	authentication	mechanism.	It’s	not	much	different
from	a	username	and	password:	there’s	a	single	token	assigned	to	each	user	that	clients	can
pass	along	with	a	request	to	authenticate	that	request	for	that	user.

This	API	token	mechanism	is	not	nearly	as	secure	as	OAuth	2.0,	so	make	sure	you	know	it’s
the	right	fit	for	your	application	before	deciding	to	use	it.	But	if	it	is,	it	couldn’t	be	much
simpler	to	implement.

First,	add	a	60-character	unique	api_token	column	to	your	users	table:

$table->string('api_token',	60)->unique();

Next,	update	whatever	method	creates	your	new	users	and	ensure	it	sets	a	value	for	this	field
for	each	new	user.	Laravel	has	a	helper	for	generating	random	strings,	so	if	you	want	to	use
that,	just	set	the	field	to	str_random(60)	for	each.	You’ll	also	need	to	do	this	for	preexisting
users	if	you’re	adding	this	to	a	live	application.

To	wrap	any	routes	with	this	authentication	method,	use	the	auth:api	route	middleware,	as	in
Example	13-28.

Example	13-28.	Applying	the	API	auth	middleware	to	a	route	group
Route::group(['prefix'	=>	'api',	'middleware'	=>	'auth:api'],	function	()	{

				//

});

Note	that,	since	you’re	using	an	authentication	guard	other	than	the	standard	guard,	you’ll
need	to	specify	that	guard	any	time	you	use	any	auth()	methods:

$user	=	auth()->guard('api')->user();

Testing
Fortunately,	testing	APIs	is	actually	simpler	than	testing	almost	anything	else	in	Laravel.

We	cover	this	in	more	depth	in	Chapter	12,	but	there	are	a	series	of	methods	for	making
assertions	against	JSON.	Combine	that	capability	with	the	simplicity	of	full-stack	application
tests	and	you	can	put	together	your	API	tests	quickly	and	easily.	Take	a	look	at	the	common
API	testing	pattern	in	Example	13-29.

Example	13-29.	A	common	API	testing	pattern
...

class	DogsApiTest	extends	TestCase

{

				use	WithoutMiddleware,	DatabaseMigrations;

				public	function	test_it_gets_all_dogs()

				{

								$this->be(factory(User::class)->create());

								$dog1	=	factory(Dog::class)->create();

								$dog2	=	factory(Dog::class)->create();

								$this->visit('api/dogs');

								$this->seeJson([

												'name'	=>	$dog1->name

]);

								$this->seeJson([

												'name'	=>	$dog2->name

]);

				}

}

Note	that	we’re	using	WithoutMiddleware	to	avoid	worrying	about	the	authentication.	You’ll
want	to	test	that	separately,	if	at	all	(for	more	on	authentication,	see	Chapter	9).

We	generate	a	user	and	authenticate	as	that	user	with	$this->be().	We	then	insert	two	dogs
into	the	database,	and	then	visit	the	API	route	for	listing	all	dogs	and	make	sure	both	are
present	in	the	output.

You	can	cover	all	of	your	API	routes	simply	and	easily	here,	including	modifying	actions	like
POST	and	PATCH.

TL;DR
Laravel	is	geared	toward	building	APIs	and	makes	it	simple	to	work	with	JSON	and	RESTful
APIs.	There	are	some	conventions,	like	for	pagination,	but	much	of	the	definition	of	exactly
how	your	API	will	be	sorted,	or	authenticated,	or	whatever	else	is	up	to	you.

Laravel	provides	tools	for	authentication	and	testing,	easy	manipulation	and	reading	of
headers,	and	working	with	JSON,	even	automatically	encoding	all	Eloquent	results	to	JSON	if
they’re	returned	directly	from	a	route.

Laravel	Passport	is	a	separate	package	that	makes	it	simple	to	create	and	manage	an	OAuth
server	in	your	Laravel	apps.

Chapter	14.	Storage	and	Retrieval

We	covered	how	to	store	data	in	relational	databases	in	Chapter	8,	but	there’s	a	lot	more	that
can	be	stored,	both	locally	and	remotely.	In	this	chapter	we’ll	cover	filesystem	and	in-memory
storage,	file	uploads	and	manipulation,	nonrelational	data	stores,	sessions,	the	cache,	cookies,
and	full-text	search.

Local	and	Cloud	File	Managers
Laravel	provides	a	series	of	file	manipulation	tools	through	the	Storage	facade,	and	a	few
helper	functions.

Laravel’s	filesystem	access	tools	can	connect	to	the	local	filesystem	as	well	as	S3,	Rackspace,
and	FTP.	The	S3	and	Rackspace	file	drivers	are	provided	by	Flysystem,	and	it’s	simple	to	add
additional	Flysystem	providers	to	your	Laravel	app	—	for	example,	Dropbox	or	WebDAV.

https://github.com/thephpleague/flysystem

Configuring	File	Access
The	definitions	for	Laravel’s	file	manager	live	in	config/filesystems.php.	Each	connection	is
called	a	“disk,”	and	Example	14-1	lists	the	disks	that	are	available	out	of	the	box.

Example	14-1.	Default	available	storage	disks
...

'disks'	=>	[

				'local'	=>	[

								'driver'	=>	'local',

								'root'	=>	storage_path('app'),

],

				'public'	=>	[

								'driver'	=>	'local',

								'root'	=>	storage_path('app/public'),

								'visibility'	=>	'public',

],

				's3'	=>	[

								'driver'	=>	's3',

								'key'	=>	'your-key',

								'secret'	=>	'your-secret',

								'region'	=>	'your-region',

								'bucket'	=>	'your-bucket',

],

],

THE	STORAGE_PATH()	HELPER
The	storage_path()	helper	used	in	Example	14-1	links	to	Laravel’s	configured	storage	directory,	storage/.
Anything	you	pass	to	it	is	added	to	the	end	of	the	directory	name,	so	storage_path('public')	will	return	the
string	storage/public.

The	local	disk	connects	to	your	local	storage	system	and	presumes	it	will	be	interacting	with
the	app	directory	of	the	storage	path,	which	is	storage/app.

The	public	disk	is	also	a	local	disk	(although	you	can	change	it	if	you’d	like),	which	is
intended	for	use	with	any	files	you	intend	to	be	served	by	your	application.	It	defaults	to	the
storage/app/public	directory,	and	if	you	want	to	use	this	directory	to	serve	files	to	the	public,
you’ll	need	to	add	a	symbolic	link	(symlink)	to	somewhere	within	the	public/	directory.
Thankfully,	there’s	an	Artisan	command	for	that:

#	Maps	public/storage	to	serve	the	files	from	storage/app/public

php	artisan	storage:link

The	s3	disk	shows	how	Laravel	connects	to	cloud-based	file	storage	systems.	If	you’ve	ever
connected	to	S3	or	any	other	cloud	storage	provider,	this	will	be	familiar;	pass	it	your	key
and	secret	and	some	information	defining	the	“folder”	you’re	working	with,	which	in	S3	is
the	region	and	the	bucket.

Using	the	Storage	Facade
In	config/filesystem.php	you	can	set	the	default	disk,	which	is	what	will	be	used	any	time	you
call	the	Storage	facade	without	specifying	a	disk.	To	specify	a	disk,	call	disk('diskname')
on	the	facade:

Storage::disk('s3')->get('file.jpg');

The	filesystems	each	provide	the	following	methods:

get('file.jpg')

Retrieves	the	file	at	file.jpg

put('file.jpg',	$contentsOrStream)

Puts	the	given	file	contents	to	file.jpg

putFile('myDir',	$file)

Puts	the	contents	of	a	provided	file	(in	the	form	of	an	instance	of	either
Illuminate\Http\File	or	Illuminate\Http\UploadedFile)	to	the	myDir	directory,	but
with	Laravel	managing	the	entire	streaming	process	and	naming	the	file

exists('file.jpg')

Returns	a	boolean	of	whether	file.jpg	exists

copy('file.jpg',	'newfile.jpg')

Copies	file.jpg	to	newfile.jpg

move('file.jpg',	'newfile.jpg')

Moves	file.jpg	to	newfile.jpg

prepend('my.log',	'log	text')

Adds	content	at	the	beginning	of	my.log

append('my.log',	'log	text')

Adds	content	to	the	end	of	my.log

delete('file.jpg')

Deletes	file.jpg

deleteDirectory('myDir')

Deletes	myDir

size('file.jpg')

Returns	the	size	in	bytes	of	file.jpg

lastModified('file.jpg')

Returns	the	Unix	timestamp	of	when	file.jpg	was	last	modified

files('myDir')

Returns	an	array	of	filenames	in	the	directory	myDir

allFiles('myDir')

Returns	an	array	of	filenames	in	the	directory	myDir	and	all	subdirectories

directories('myDir')

Returns	an	array	of	directory	names	in	the	directory	myDir

allDirectories('myDir')

Returns	an	array	of	directory	names	in	the	directory	myDir	and	all	subdirectories

INJECTING	AN	INSTANCE
If	you’d	prefer	injecting	an	instance	instead	of	using	the	File	facade,	typehint	or	inject
Illuminate\Filesystem\Filesystem	and	you’ll	get	all	the	same	methods	available	to	you.

Adding	Additional	Flysystem	Providers
If	you	want	to	add	an	additional	Flysystem	provider,	you’ll	need	to	“extend”	Laravel’s	native
storage	system.	In	a	service	provider	somewhere	—	it	could	be	the	boot()	method	of
AppServiceProvider,	but	it’d	be	more	appropriate	to	create	a	unique	service	provider	for
each	new	binding	—	use	the	Storage	facade	to	add	new	storage	systems,	as	seen	in
Example	14-2.

Example	14-2.	Adding	additional	Flysytem	providers
//	Some	service	provider

public	function	boot()

{

				Storage::extend('dropbox',	function	($app,	$config)	{

								$client	=	new	DropboxClient(

												$config['accessToken'],	$config['clientIdentifier']

);

								return	new	Filesystem(new	DropboxAdapter($client));

				});

}

Basic	File	Uploads	and	Manipulation
One	of	the	more	common	usages	for	the	Storage	facade	is	accepting	file	uploads	from	your
application’s	users.	Let’s	look	at	a	common	workflow	for	that,	in	Example	14-3.

Example	14-3.	Common	user	upload	workflow
...

class	DogsController

{

				public	function	updatePicture(Request	$request,	Dog	$dog)

				{

								Storage::put(

												'dogs/'	.	$dog->id,

												file_get_contents($request->file('picture')->getRealPath())

);

				}

We	put()	to	a	file	named	dogs/{id},	and	we	grab	our	contents	from	the	uploaded	file.	Every
uploaded	file	is	a	descendant	of	the	SplFileInfo	class,	which	provides	a	getRealPath()
method	that	returns	the	path	to	the	file’s	location.	So,	we	get	the	temporary	upload	path	for	the
user ’s	uploaded	file,	read	it	with	file_get_contents(),	and	pass	it	into	Storage::put().

Since	we	have	this	file	available	to	us	here,	we	can	do	anything	we	want	to	the	file	before	we
store	it	—	use	an	image	manipulation	package	to	resize	it	if	it’s	an	image,	validate	it	and
reject	it	if	it	doesn’t	meet	our	criteria,	or	whatever	else	we	like.

If	we	wanted	to	upload	this	same	file	to	S3	and	we	had	our	credentials	stored	in
config/filesystems.php,	we	could	just	adjust	Example	14-3	to	call	Storage::disk('s3')-
>put();	we’ll	now	be	uploading	to	S3.	Take	a	look	at	Example	14-4	to	see	a	more	complex
upload	example.

Example	14-4.	A	more	complex	example	of	file	uploads,	using	Intervention
...

class	DogsController

{

				public	function	updatePicture(Request	$request,	Dog	$dog)

				{

								$original	=	$request->file('picture');

								//	Resize	image	to	max	width	150

								$image	=	Image::make($original)->resize(150,	null,	function	($constraint)	{

												$constraint->aspectRatio();

								})->encode('jpg',	75);

								Storage::put(

												'dogs/thumbs/'		.	$dog->id,

												$image->getEncoded()

);

				}

I	used	an	image	library	called	Intervention	in	Example	14-4	just	as	an	example;	you	can	use
any	library	you	want.	The	important	point	is	that	you	have	the	freedom	to	manipulate	the	files
however	you	want	before	you	store	them.

http://image.intervention.io/

USING	STORE()	AND	STOREAS()	ON	THE	UPLOADED	FILE
Laravel	5.3	introduced	the	ability	to	store	an	uploaded	file	using	the	file	itself.	Learn	more	in	Example	6-11.

Sessions
Session	storage	is	the	primary	tool	we	use	in	web	applications	to	store	state	between	page
requests.	Laravel’s	session	manager	supports	session	drivers	using	files,	cookies,	a	database,
Memcached	or	Redis,	or	in-memory	arrays	(which	expire	after	the	page	request	and	are	only
good	for	tests).

You	can	configure	all	of	your	session	settings	and	drivers	in	config/session.php.	You	can
choose	whether	or	not	to	encrypt	your	session	data,	select	which	driver	to	use	(file	is	the
default),	and	specify	more	connection-specific	details	like	the	length	of	session	storage	and
which	files	or	database	tables	to	use.	Take	a	look	at	the	session	docs	to	learn	about	specific
dependencies	and	settings	you	need	to	prepare	for	whichever	driver	you	choose	to	use.

The	general	API	of	the	session	tools	allows	you	to	save	and	retrieve	data	based	on	individual
keys:	session()->put('user_id')	and	session()->get('user_id'),	for	example.	Make
sure	to	avoid	saving	anything	to	a	flash	session	key,	since	Laravel	uses	that	internally	for
flash	(only	available	for	the	next	page	request)	session	storage.

https://laravel.com/docs/master/session

Accessing	the	Session
The	most	common	way	to	access	the	session	is	using	the	Session	facade:

session()->get('user_id');

But	you	can	also	use	the	session()	method	on	any	given	Illuminate	Request	object,	as	in
Example	14-5.

Example	14-5.	Using	the	session()	method	on	a	Request	object
Route::get('dashboard',	function	(Request	$request)	{

				$request->session()->get('user_id');

});

Or	you	can	inject	an	instance	of	Illuminate\Session\Store,	as	in	Example	14-6.

Example	14-6.	Injecting	the	backing	class	for	sessions
Route::get('dashboard',	function	(Illuminate\Session\Store	$session)	{

				return	$session->get('user_id');

});

Finally,	you	can	use	the	global	session()	helper.	Use	it	with	no	parameters	to	get	a	session
instance,	with	a	single	string	parameter	to	“get”	from	the	session,	or	with	an	array	to	“put”	to
the	session,	as	demonstrated	in	Example	14-7.

Example	14-7.	Using	the	global	session()	helper
//	get

$value	=	session()->get('key');

$value	=	session('key');

//	put

session()->put('key',	'value');

session(['key',	'value']);

If	you’re	new	to	Laravel	and	not	sure	which	to	use,	I’d	recommend	using	the	global	helper.

The	Methods	Available	on	Session	Instances
The	two	most	common	methods	are	get()	and	put(),	but	let’s	take	a	look	at	each	of	the
available	methods	and	their	parameters:

session()->get($key,	$fallbackValue)

get()	pulls	the	value	of	the	provided	key	out	of	the	session.	If	there	is	no	value	attached
to	that	key,	it	will	return	the	fallback	value	instead	(and	if	you	don’t	provide	a	fallback,	it
will	return	null).	The	fallback	value	can	be	a	string	or	a	closure,	as	you	can	see	in	the
following	examples.

$points	=	session()->get('points');

$points	=	session()->get('points',	0);

$points	=	session()->get('points',	function	()	{

				return	(new	PointGetterService)->getPoints();

});

session()->put($key,	$value)

put()	stores	the	provided	value	in	the	session	at	the	provided	key:

session()->put('points',	45);

$points	=	session()->get('points');

session()->push($key,	$value)

If	any	of	your	session	values	are	arrays,	you	can	use	push()	to	add	a	value	onto	the
array:

session()->put('friends',	['Saúl',	'Quang',	'Mechteld']);

session()->push('friends',	'Javier');

session()->has($key)

has()	checks	whether	there’s	a	value	set	at	the	provided	key:

if	(session()->has('points'))	{

				//	do	something

}

You	can	also	pass	an	array	of	keys,	and	it	only	returns	true	if	all	of	the	keys	exist.

SESSION()->HAS()	AND	NULL	VALUES
If	a	session	value	is	set,	but	the	value	is	null,	session()->has()	will	return	false.

session()->all()

all()	returns	an	array	of	everything	that’s	in	the	session,	including	those	values	set	by
the	framework.	You’ll	likely	see	values	under	keys	like	_token	(CSRF	tokens),
_previous	(previous	page,	for	back()	redirects),	and	flash	(for	flash	storage).

session()->forget($key)	and	session()->flush()
forget()	removes	a	previously	set	session	value.	flush()	removes	every	session	value,
even	those	set	by	the	framework:

session()->put('a',	'awesome');

session()->put('b',	'bodacious');

session()->forget('a');

//	a	is	no	longer	set,	b	is	still	set

session()->flush();

//	session	is	now	empty

session()->pull($key,	$fallbackValue)

pull()	is	the	same	as	get(),	except	that	it	deletes	the	value	from	the	session	after	pulling
it.

session()->regenerate()

It’s	not	common,	but	if	you	need	to	regenerate	your	session	ID,	regenerate()	is	there
for	you.

Flash	Session	Storage
There	are	three	more	methods	we	haven’t	covered	yet,	and	they	all	have	to	do	with	something
called	“flash”	session	storage.

One	very	common	pattern	for	session	storage	is	to	set	a	value	that	you	only	want	available	for
the	next	page	load.	For	example,	you	might	want	to	store	a	message	like	“Updated	post
successfully.”	You	could	manually	get	that	message	and	then	wipe	it	on	the	next	page	load,	but
if	you	use	this	pattern	a	lot	it	can	get	wasteful.	Enter	flash	session	storage:	keys	that	are
expected	to	only	last	for	a	single	page	request.

Laravel	handles	the	work	for	you,	and	all	you	need	to	do	is	use	flash()	instead	of	put().	The
useful	methods	here	are:

session()->flash($key,	$value)

flash()	sets	the	session	key	to	the	provided	value	for	just	the	next	page	request.

session()->reflash()	and	session()->keep($key)
If	you	need	the	previous	page’s	flash()	session	data	to	stick	around	for	one	more
request,	you	can	use	reflash()	to	restore	the	entire	flash	contents	for	the	next	request	or
keep($key)	to	just	restore	a	single	flash	value	for	the	next	request.	keep()	can	also
accept	an	array	of	keys	to	reflash.

Cache
Caches	are	structured	very	similarly	to	sessions.	You	provide	a	key	and	Laravel	stores	it	for
you.	The	biggest	difference	is	that	the	data	in	a	cache	is	cached	per	application	and	the	data	in
a	session	is	cached	per	user.	That	means	caches	are	more	commonly	used	for	storing	large
database	results,	API	calls,	or	other	slow	queries	that	can	stand	to	get	a	little	bit	“stale.”

The	cache	configuration	settings	are	available	at	config/cache.php.	Just	like	with	a	session,
you	can	set	the	specific	configuration	details	for	any	of	your	drivers,	and	also	choose	which
will	be	your	default.	Laravel	uses	the	file	cache	driver	by	default,	but	you	can	also	use
Memcached	or	Redis,	APC,	or	a	database,	or	write	your	own	cache	driver.	Take	a	look	at	the
cache	docs	to	learn	about	specific	dependencies	and	settings	you	need	to	prepare	for
whichever	driver	you	choose	to	use.

https://laravel.com/docs/master/cache

Accessing	the	Cache
Just	like	with	sessions,	there	are	a	few	different	ways	to	access	a	cache.	You	can	use	the
facade:

$users	=	Cache::get('users');

You	can	get	an	instance	from	the	container,	as	in	Example	14-8.

Example	14-8.	Injecting	an	instance	of	the	cache
Route::get('users',	function	(Illuminate\Contracts\Cache\Repository	$cache)	{

				return	$cache->get('users');

});

Or	you	can	use	the	global	cache()	helper	(introduced	in	Laravel	5.3),	as	in	Example	14-9.

Example	14-9.	Using	the	global	cache()	helper
//	get	from	cache

$users	=	cache('key',	'default	value');

$users	=	cache()->get('key',	'default	value');

//	put	for	$minutes	duration

$users	=	cache(['key'	=>	'value'],	$minutes);

$users	=	cache()->put('key',	'value',	$minutes);

If	you’re	new	to	Laravel	and	not	sure	which	to	use,	I’d	recommend	using	the	global	helper.

The	Methods	Available	on	Cache	Instances
Let’s	take	a	look	at	the	methods	you	can	call	on	a	Cache	instance:

cache()->get($key,	$fallbackValue)	and	
cache()->pull($key,	$fallbackValue)

get()	makes	it	easy	to	retrieve	the	value	for	any	given	key.	pull()	is	the	same	as	get()
except	it	removes	the	cached	value	after	retrieving	it.

cache()->put($key,	$value,	$minutesOrExpiration)

put()	sets	the	value	of	the	specified	key	for	a	given	number	of	minutes.	If	you’d	prefer
setting	an	expiration	date/time	instead	of	a	number	of	minutes,	you	can	pass	a	Carbon
object	as	the	third	parameter:

cache()->put('key',	'value',	Carbon::now()->addDay());

cache()->add($key,	$value)

add()	is	similar	to	put(),	except	if	the	value	already	exists,	it	won’t	set	it.	Also,	the
method	returns	a	boolean	of	whether	or	not	the	value	was	actually	added:

$someDate	=	Carbon::now();

cache()->add('someDate',	$someDate);	//	returns	true

$someOtherDate	=	Carbon::now()->addHour();

cache()->add('someDate',	$someOtherDate);	//	returns	false

cache()->forever($key,	$value)

forever()	saves	a	value	to	the	cache	for	a	specific	key;	it’s	the	same	as	put(),	except	the
values	will	never	expire	(until	they’re	removed	with	forget()).

cache()->has($key)

has()	returns	a	boolean	of	whether	or	not	there’s	a	value	at	the	provided	key.

cache()->remember($key,	$minutes,	$closure)	and	
cache()->rememberForever($key,	$closure)

remember()	provides	a	single	method	to	handle	a	very	common	flow:	look	up	whether	a
value	exists	in	the	cache	for	a	certain	key,	and	if	it	doesn’t,	get	that	value	somehow,	save
it	to	the	cache,	and	return	it.
remember()	lets	you	provide	a	key	to	look	up,	the	number	of	minutes	it	should	be	saved
for,	and	a	closure	to	define	how	to	look	it	up,	in	case	the	key	has	no	value	set.
rememberForever()	is	the	same,	except	it	doesn’t	need	you	to	set	the	number	of	minutes	it
should	expire	after.	Take	a	look	at	the	following	example	to	see	a	common	user	scenario
for	remember():

//	Either	returns	the	value	cached	at	"users"	or	gets	"User::all()",

//	caches	it	at	"users",	and	returns	it

$users	=	cache()->remember('users',	120,	function	()	{

				return	User::all();

});

cache()->increment($key,	$amount)	and	cache()->decrement($key,	$amount)
increment()	and	decrement()	allow	you	to	increment	and	decrement	integer	values	in
the	cache.	If	there	is	no	value	at	the	given	key,	it’ll	be	treated	as	if	it	were	0,	and	if	you
pass	a	second	parameter	to	increment	or	decrement,	it’ll	increment	or	decrement	by	that
amount	instead	of	by	1.

cache()->forget($key)	and	cache()->flush()
forget()	works	just	like	Session’s	forget()	method:	pass	it	a	key	and	it’ll	wipe	that
key’s	value.	flush()	wipes	the	entire	cache.

Cookies
You	might	expect	cookies	to	work	the	same	as	the	session	and	the	cache.	A	facade	and	a
global	helper	are	available	for	these	too,	and	our	mental	models	of	all	three	are	similar:	you
can	get	or	set	their	values	in	the	same	way.

But	because	cookies	are	inherently	attached	to	the	requests	and	responses,	you’ll	need	to
interact	with	cookies	differently.	Let’s	look	really	briefly	at	what	makes	cookies	different.

Cookies	in	Laravel
Cookies	can	exist	in	three	places	in	Laravel.	They	can	come	in	via	the	request,	which	means
the	user	had	the	cookie	when	she	visited	the	page.	You	can	read	that	with	the	Cookie	facade,	or
you	can	read	it	off	of	the	request	object.

They	can	also	be	sent	out	with	a	response,	which	means	the	response	will	instruct	the	user ’s
browser	to	save	the	cookie	for	future	visits.	You	can	do	this	by	adding	the	cookie	to	your
response	object	before	returning	it.

And	lastly,	a	cookie	can	be	queued.	If	you	use	the	Cookie	facade	to	set	a	cookie,	you	have	put
it	into	a	“CookieJar”	queue,	and	it	will	be	removed	and	added	to	the	response	object	by	the
AddQueuedCookiesToResponse	middleware.

Accessing	the	Cookie	Tools
You	can	get	and	set	cookies	in	three	places:	the	Cookie	facade,	the	cookie()	global	helper,	and
the	request	and	response	objects.

The	Cookie	facade
The	Cookie	facade	is	the	most	full-featured	option,	allowing	you	to	not	only	read	and	make
cookies,	but	also	to	queue	them	to	be	added	to	the	response.	It	provides	the	following
methods:

Cookie::get($key)

To	pull	the	value	of	a	cookie	that	came	in	with	the	request,	you	can	just	run
Cookie::get('cookie-name').	This	is	the	simplest	option.

Cookie::has($key)

You	can	check	whether	a	cookie	came	in	with	the	request	using	Cookie::has('cookie-
name'),	which	returns	a	boolean.

Cookie::make(...params)

If	you	want	to	make	a	cookie	without	queueing	it	anywhere,	you	can	use	Cookie::make().
The	most	likely	use	for	this	would	be	to	make	a	cookie	and	then	manually	attach	it	to	the
response	object,	which	we’ll	cover	in	a	bit.
Here	are	the	parameters	for	make(),	in	order:

$name	is	the	name	of	the	cookie

$value	is	the	content	of	the	cookie

$minutes	specifies	how	many	minutes	the	cookie	should	live

$path	is	the	path	under	which	your	cookie	should	be	valid

$domain	lists	the	domains	for	which	your	cookie	should	work

$secure	indicates	whether	the	cookie	should	only	be	transmitted	over	a	secure
(HTTPS)	connection

$httpOnly	indicates	whether	the	cookie	will	be	made	accessible	only	through	the
HTTP	protocol

Cookie::make()

Returns	an	instance	of	Symfony\Component\HttpFoundation\Cookie.

DEFAULT	SETTINGS	FOR	COOKIES
The	CookieJar	that	the	Cookie	facade	instance	uses	reads	its	defaults	from	the	session	config.	So,	if	you
change	any	of	the	configuration	values	for	the	session	cookie	in	config/session.php,	those	same	defaults
will	be	applied	to	all	of	your	cookies	that	you	create	using	the	Cookie	facade.

Cookie::queue(Cookie	||	...params)

If	you	use	Cookie::make(),	you’ll	still	need	to	attach	the	cookie	to	your	response,	which
we’ll	cover	shortly.	Cookie::queue()	has	the	same	syntax	as	Cookie::make(),	but	it
enqueues	the	created	cookie	to	be	automatically	attached	to	the	response	by	middleware.
If	you’d	like,	you	can	also	just	pass	a	cookie	you’ve	created	yourself	into
Cookie::queue().
Here’s	the	simplest	possible	way	to	add	a	cookie	to	the	response	in	Laravel:

Cookie::queue('dismissed-popup',	true,	15);

WHEN	YOUR	QUEUED	COOKIES	WON’T	GET	SET
Cookies	can	only	be	returned	as	a	part	of	a	response.	So,	if	you	enqueue	cookies	with	the	Cookie	facade
and	then	your	response	isn’t	returned	correctly	—	for	example,	if	you	use	PHP’s	exit()	or	something
halts	the	execution	of	your	script	—	your	cookies	won’t	be	set.

The	cookie()	global	helper
The	cookie()	global	helper	will	return	a	CookieJar	instance	if	you	call	it	with	no	parameters.
However,	two	of	the	most	convenient	methods	on	the	Cookie	facade	—	has()	and	get()	—
exist	only	on	the	facade,	not	on	the	CookieJar.	So,	in	this	context,	I	think	the	global	helper	is
actually	less	useful	than	the	other	options.

The	one	task	for	which	the	cookie()	global	helper	is	useful	is	creating	a	cookie.	If	you	pass
parameters	to	cookie(),	they’ll	be	passed	directly	to	the	equivalent	of	Cookie::make(),	so	this
is	the	fastest	way	to	create	a	cookie:

$cookie	=	cookie('dismissed-popup',	true,	15);

INJECTING	AN	INSTANCE
You	can	also	inject	an	instance	of	Illuminate\Cookie\CookieJar	anywhere	in	the	app,	but	you’ll	have	the	same
limitations	discussed	here.

Cookies	on	request	and	response	objects
Since	cookies	come	in	as	a	part	of	the	request	and	are	set	as	a	part	of	the	response,	those
Illuminate	objects	are	the	places	they	actually	live.	The	Cookie	facade’s	get(),	has(),	and
queue()	methods	are	just	proxies	to	interact	with	the	request	and	response	objects.

So,	the	simplest	way	to	interact	with	cookies	is	to	pull	cookies	from	the	request	and	set	them
on	the	response.

Reading	cookies	from	request	objects
Once	you	have	a	copy	of	your	request	object	—	if	you	don’t	know	how	to	get	one,	just	try
app('request')	—	you	can	use	the	request	object’s	cookie()	method	to	read	its	cookies,	as
shown	in	Example	14-10.

Example	14-10.	Reading	a	cookie	from	a	request	object
Route::get('dashboard',	function	(Illuminate\Http\Request	$request)	{

				$userDismissedPopup	=	$request->cookie('dismissed-popup',	false);

});

As	you	can	see	in	this	example,	the	cookie()	method	has	two	parameters:	the	cookie’s	name
and,	optionally,	the	fallback	value.

Setting	cookies	on	response	objects
Whenever	you	have	your	response	object	ready,	you	can	use	the	cookie()	method	(or	the
withCookie()	method	in	Laravel	prior	to	5.3)	on	it	to	add	a	cookie	to	the	response,	like	in
Example	14-11.

Example	14-11.	Setting	a	cookie	on	a	response	object
Route::get('dashboard',	function	()	{

				$cookie	=	cookie('saw-dashboard',	true);

				return	Response::view('dashboard')

								->cookie($cookie);

});

If	you’re	new	to	Laravel	and	not	sure	which	option	to	use,	I’d	recommend	setting	cookies	on
the	request	and	response	objects.	It’s	a	bit	more	work,	but	will	lead	to	fewer	surprises	if	future
developers	don’t	understand	the	CookieJar	queue.

Full-Text	Search	with	Laravel	Scout
Laravel	Scout	is	a	separate	package	that	you	can	bring	into	your	Laravel	apps	to	add	full-text
search	to	your	Eloquent	models.	Scout	makes	it	easy	to	index	and	search	the	contents	of	your
Eloquent	models;	it	ships	with	Algolia	and	Elasticsearch	drivers,	but	there	are	also
community	packages	for	other	providers.	I’ll	assume	you’re	using	Algolia.

Installing	Scout
First,	pull	in	the	package	in	any	Laravel	5.3+	app:

composer	require	laravel/scout

Next,	add	Laravel\Scout\ScoutServiceProvider::class,	to	the	providers	section	of
config/app.php.

You’ll	want	to	set	up	your	Scout	configuration.	Run	php	artisan	vendor:publish	and	paste
your	Algolia	credentials	in	config/scout.php.

Finally,	install	the	Algolia	SDK:

composer	require	algolia/algoliasearch-client-php

Marking	Your	Model	for	Indexing
In	your	model	(we’ll	use	Review,	for	a	book	review,	for	this	example),	import	the
Laravel\Scout\Searchable	trait.

You	can	define	which	properties	are	searchable	using	the	toSearchableArray()	method	(it
defaults	to	mirroring	toArray()),	and	define	the	name	of	the	model’s	index	using	the
searchableAs()	method	(it	defaults	to	the	table	name).

Scout	subscribes	to	the	create/delete/update	events	on	your	marked	models.	When	you	create,
update,	or	delete	any	rows,	Scout	will	sync	those	changes	up	to	Algolia.	It’ll	either	make	those
changes	synchronously	with	your	updates	or,	if	you	configure	Scout	to	use	a	queue,	queue	the
updates.

Searching	Your	Index
Scout’s	syntax	is	simple.	For	example,	to	find	any	Review	with	the	word	Llew	in	it:

Review::search('Llew')->get();

You	can	also	modify	your	queries	as	you	would	with	regular	Eloquent	calls:

//	Get	all	records	from	the	Review	that	match	the	term	"Llew",

//	limited	to	20	per	page	and	reading	the	page	query	parameter,

//	just	like	Eloquent	pagination

Review::search('Llew')->paginate(20);

//	Get	all	records	from	the	Review	that	match	the	term	"Llew"

//	and	have	the	account_id	field	set	to	2

Review::search('Llew')->where('account_id',	2)->get();

What	comes	back	from	these	searches?	A	collection	of	Eloquent	models,	rehydrated	from
your	database.	The	IDs	are	stored	in	Algolia,	which	returns	a	list	of	matched	IDs;	Scout	then
pulls	the	database	records	for	those	and	returns	them	as	Eloquent	objects.

You	don’t	have	full	access	to	the	complexity	of	SQL	WHERE	commands,	but	it	provides	a	basic
framework	for	comparison	checks	like	you	can	see	in	the	code	samples	here.

Queues	and	Scout
At	this	point	your	app	will	be	making	HTTP	requests	to	Algolia	on	every	request	that
modifies	any	database	records.	This	can	slow	down	your	application	quickly,	which	is	why
Scout	makes	it	easy	to	push	all	of	its	actions	onto	a	queue.

In	config/scout.php,	set	queue	to	true	so	that	these	updates	are	set	to	be	indexed
asynchronously.	Your	full-text	index	is	now	operating	under	“eventual	consistency”;	your
database	records	will	receive	the	updates	immediately,	and	the	updates	to	your	search	indexes
will	be	queued	and	updated	as	fast	as	your	queue	worker	allows.

Perform	Operations	Without	Indexing
If	you	need	to	perform	a	set	of	operations	and	avoid	triggering	the	indexing	in	response,
wrap	the	operations	in	the	withoutSyncingToSearch()	method	on	your	model:

Review::withoutSyncingToSearch(function	()	{

				//	make	a	bunch	of	reviews,	e.g.

				factory(Review::class,	10)->create();

});

Manually	Trigger	Indexing	via	Code
If	you	want	to	manually	trigger	indexing	your	model,	you	can	do	it	using	code	in	your	app	or
via	the	command	line.

To	manually	trigger	indexing	from	your	code,	add	searchable()	to	the	end	of	any	Eloquent
query	and	it	will	index	all	of	the	records	that	were	found	in	that	query:

Review::all()->searchable();

You	can	also	choose	to	scope	the	query	to	only	those	you	want	to	index.	However,	Scout	is
smart	enough	to	insert	new	records	and	update	old	records,	so	you	may	choose	to	just	reindex
the	entire	contents	of	the	model’s	database	table.

You	can	also	run	searchable()	on	relationship	methods:

$user->reviews()->searchable();

If	you	want	to	unindex	any	records	with	the	same	sort	of	query	chaining,	just	use
unsearchable()	instead:

Review::where('sucky',	true)->unsearchable();

Manually	Trigger	Indexing	via	the	CLI
You	can	also	trigger	indexing	with	an	Artisan	command:

php	artisan	scout:import	App\\Review

This	will	chunk	all	of	the	Review	models	and	index	them	all.

Testing
Testing	most	of	these	features	is	as	simple	as	just	using	them	in	your	tests;	no	need	to	mock
or	stub.	The	default	configuration	will	already	work	—	for	example,	take	a	look	at
phpunit.xml	to	see	that	your	session	driver	and	cache	driver	have	been	set	to	values
appropriate	for	tests.

However,	there	are	a	few	convenience	methods	and	a	few	gotchas	that	you	should	know	about
before	you	attempt	to	test	them	all.

File	Storage
Testing	file	uploads	can	be	a	bit	of	a	pain,	but	follow	these	steps	and	it	will	be	clear.

Uploading	fake	files
First,	let’s	look	at	how	to	manually	create	a	Symfony	UploadedFile	object	for	use	in	our
application	testing	(Example	14-12).	Note	that	this	assumes	we	have	a	storage/tests	directory
where	we’re	placing	a	file	named	for-tests.jpg	that	we’ll	use	for	our	tests.

Example	14-12.	Creating	a	fake	UploadedFile	for	testing
public	function	test_file_should_be_stored()

{

				$path	=	storage_path('tests/for-tests.jpg');

				$file	=	new	UploadedFile(

								$path,	//	file	path

								'for-tests.jpg',	//	original	file	name

								'image/jpg',	//	MIME	type

								filesize($path),	//	file	size;	best	to	get	once	&	hardcode	into	your	test,

								null,	//	error	code

								true	//	whether	we're	in	test	mode

);

				$this->call('post',	'upload-route',	[],	[],	['upload'	=>	$file]);

				$this->assertResponseOk();

}

We’ve	created	a	new	instance	of	UploadedFile	that	refers	to	our	testing	file,	and	we	can	now
use	it	to	test	our	routes.

Returning	fake	files
If	your	route	is	expecting	a	real	file	to	exist,	sometimes	the	best	way	to	make	it	testable	is	to
make	that	real	file	actually	exist.	Let’s	say	every	user	must	have	a	profile	picture.

First,	let’s	set	up	the	model	factory	for	the	user	to	use	Faker	to	make	a	copy	of	the	picture,	as
in	Example	14-13.

Example	14-13.	Returning	fake	files	with	Faker
$factory->define(User::class,	function	(Faker\Generator	$faker)	{

				return	[

								'picture'	=>	$faker->file(

												storage_path('tests'),	//	source	directory

												storage_path('app'),	//	target	directory

												false	//	return	just	filename,	not	full	path

),

								'name'	=>	$faker->name,

];

});

Faker ’s	file()	method	picks	a	random	file	from	the	source	directory	and	copies	it	to	the
target	directory,	and	then	returns	the	filename.	So	we’ve	just	picked	a	random	file	from	the
storage/tests	directory,	copied	it	to	the	storage/app	directory,	and	set	its	filename	as	the
picture	property	on	our	User.	At	this	point	we	can	use	a	User	in	tests	on	routes	that	expect	the
User	to	have	a	picture,	as	seen	in	Example	14-14.

Example	14-14.	Asserting	that	an	image’s	URL	is	echoed
public	function	test_user_profile_picture_echoes_correctly()

{

				$user	=	factory(User::class)->create();

				$this->visit("users/{$user->id}");

				$this->see($user->picture);

}

Of	course,	in	many	contexts	you	can	just	generate	a	random	string	there	without	even	copying
a	file.	But	if	your	routes	check	for	the	file’s	existence	or	run	any	operations	on	the	file,	this	is
your	best	option.

Session
If	you	need	to	assert	something	has	been	set	in	the	session,	you	can	use	some	convenience
methods	Laravel	makes	available	in	every	test.	All	of	these	methods	are	available	in	your	tests
on	the	$this	object:

assertSessionHas($key,	$value	=	null)

Asserts	that	the	session	has	a	value	for	a	particular	key,	and,	if	the	second	parameter	is
passed,	that	that	key	is	a	particular	value:

public	function	test_some_thing()

{

				//	do	stuff

				$this->assertSessionHas('key',	'value');

}

assertSessionHasAll(array	$bindings)

If	passed	an	array	of	key/value	pairs,	asserts	that	all	of	the	keys	are	equal	to	all	of	the
values.	If	one	or	more	of	the	array	entries	is	just	a	value	(with	PHP’s	default	numeric
key),	it	will	just	be	checked	for	existence	in	the	session:

$check	=	[

				'has',

				'hasWithThisValue'	=>	'thisValue',

]

$this->assertSessionHasAll($check);

assertSessionMissing($key)

Asserts	that	the	session	does	not	have	a	value	for	a	particular	key.

assertSessionHasErrors($bindings	=	[],	$format	=	null)

Asserts	that	the	session	has	an	errors	value.	This	is	the	key	Laravel	uses	to	send	errors
back	from	validation	failures.
If	the	array	contains	just	keys,	it	will	check	that	errors	are	set	with	those	keys:

$this->post('test-route',	['failing'	=>	'data']);

$this->assertSessionHasErrors(['name',	'email']);

You	can	also	pass	values	for	those	keys,	and	optionally	a	$format,	to	check	that	the
messages	for	those	errors	came	back	the	way	you	expected:

$this->post('test-route',	['failing'	=>	'data']);

$this->assertSessionHasErrors([

				'email'	=>	'The	email	field	is	required.'

],	':message');

assertHasOldInput()

Since	you	can	flash	the	previous	page’s	input	to	the	session,	you	may	want	to	assert	that
it’s	been	flashed	correctly:

$this->post('test-route',	['failing'	=>	'data']);

$this->assertHasOldInput();

Cache
There’s	nothing	special	about	testing	your	features	that	use	cache	—	just	do	it:

Cache::put('key',	'value',	15);

$this->assertEquals('value',	Cache::get('key'));

Laravel	uses	the	“array”	cache	driver	by	default	in	your	testing	environment,	which	just	stores
your	cache	values	in	memory.

Cookies
If	you	need	to	set	a	cookie	before	testing	a	route	in	your	application	tests,	you	can	manually
pass	cookies	to	one	of	the	parameters	of	the	call()	method.	To	learn	more	about	call(),
check	out	Chapter	12.

EXCLUDING	YOUR	COOKIE	FROM	ENCRYPTION	DURING
TESTING

Your	cookies	won’t	work	in	your	tests	unless	you	exclude	them	from	Laravel’s	cookie	encryption	middleware.
You	can	do	this	by	teaching	the	EncryptCookies	middleware	to	temporarily	disable	itself	for	that	cookie:

use	Illuminate\Cookie\Middleware\EncryptCookies;

...

$this->app->resolving(

				EncryptCookies::class,

				function	($object)	{

								$object->disableFor('cookie-name');

				}

);

//	...run	test

That	means	you	can	set	and	check	against	a	cookie	with	something	like	Example	14-15.

Example	14-15.	Running	unit	tests	against	cookies
public	function	test_cookie()

{

				$this->app->resolving(EncryptCookies::class,	function	($object)	{

								$object->disableFor('my-cookie');

				});

				$this->call('get',	'route-echoing-my-cookie-value',	[],	['my-cookie'	=>	'baz']);

				$this->see('baz');

}

If,	for	some	reason,	you’d	rather	not	disable	encryption,	you	can	instead	set	the	encrypted
value	of	the	cookie	like	in	Example	14-16.

Example	14-16.	Manually	encrypting	a	cookie	before	setting	it
use	Illuminate\Contracts\Encryption\Encrypter;

...

public	function	test_cookie()

{

				$encryptedBaz	=	app(Encrypter::class)->encrypt('baz');

				$this->call(

								'get',

								'route-echoing-my-cookie-value',

								[],

								['my-cookie'	=>	$encryptedBaz]

);

				$this->see('baz');

}

If	you	want	to	test	that	a	response	has	a	cookie	set,	you	can	use	either	seeCookie()	to	test	for
the	cookie:

$this->visit('cookie-setting-route');

$this->seeCookie('cookie-name');

or	seePlainCookie()	to	test	for	the	cookie	and	to	assert	that	it’s	not	encrypted.

TL;DR
Laravel	provides	simple	interfaces	to	many	common	storage	operations:	filesystem	access,
sessions,	cookies,	the	cache,	and	search.	Each	of	these	APIs	is	the	same	regardless	of	which
provider	you	use,	which	Laravel	enables	by	allowing	multiple	“drivers”	to	serve	the	same
public	interface.	This	makes	it	simple	to	switch	providers	depending	on	the	environment,	or
as	the	needs	of	the	application	change.

Chapter	15.	Mail	and	Notifications

Sending	an	application’s	users	notifications	via	email,	Slack,	SMS,	or	another	notification
system	is	a	common	but	surprisingly	complex	requirement.	Laravel’s	mail	and	notification
features	provide	consistent	APIs	that	abstract	away	the	need	to	pay	too	close	attention	to	any
particular	provider.	Just	like	in	Chapter	14,	you’ll	write	your	code	once	and	choose	at	the
configuration	level	which	provider	you’ll	use	to	send	your	email	or	notifications.

Mail
Laravel’s	mail	functionality	is	a	convenience	layer	on	top	of	SwiftMailer,	and	out	of	the	box
Laravel	comes	with	drivers	for	Mailgun,	Mandrill,	Sparkpost,	SES,	SMTP,	PHP	Mail,	and
Sendmail.

For	all	of	the	cloud	services,	you’ll	set	your	authentication	information	in
config/services.php.	However,	if	you	take	a	look	you’ll	see	there	are	already	keys	there	—	and
in	config/mail.php	—	that	allow	you	to	customize	your	application’s	mail	functionality	in	.env
using	variables	like	MAIL_DRIVER	and	MAILGUN_SECRET.

http://swiftmailer.org/

CLOUD-BASED	API	DRIVER	DEPENDENCIES
If	you’re	using	any	of	the	cloud-based	API	drivers,	you’ll	need	to	bring	Guzzle	in	with	Composer.	You	can	run
the	following	command	to	add	it:

composer	require	guzzlehttp/guzzle:"~5.3|~6.0"

If	you	use	the	SES	driver,	you’ll	need	to	run	the	following	command:

composer	require	aws/aws-sdk-php:~3.0

“Classic”	Mail
There	are	two	different	syntaxes	in	Laravel	for	sending	mail:	classic	and	mailable.	The
mailable	syntax	is	the	preferred	syntax	from	5.3	onward,	so	we’re	going	to	focus	on	that	in
this	book.	But	for	those	who	are	working	in	5.1	or	5.2,	here’s	a	quick	look	at	how	the	classic
syntax	(Example	15-1)	works.

Example	15-1.	Basic	“classic”	mail	syntax
Mail::send(

				'emails.assignment',

				['trainer'	=>	$trainer,	'trainee'	=>	$trainee],

				function	($m)	use	($trainer,	$trainee)	{

								$m->from($trainer->email,	$trainer->name);

								$m->to($trainee->email,	$trainee->name)->subject('A	New	Assignment!');

				}

);

The	first	parameter	of	Mail::send()	is	the	name	of	the	view.	Remember,	emails.assignment
means	resources/views/emails/assignment.blade.php	or
resources/views/emails/assignment.php.

The	second	parameter	is	an	array	of	data	that	you	want	to	pass	to	the	view.

The	third	parameter	is	a	closure,	in	which	you	define	how	and	where	to	send	the	email:	from,
to,	CC,	BCC,	subject,	and	any	other	metadata.	Make	sure	to	use	any	variables	you	want	access
to	within	the	closure.	And	note	that	the	closure	is	passed	one	parameter,	which	we’ve	named
$m;	this	is	the	message	object.

Take	a	look	at	the	old	docs	to	learn	about	the	classic	mail	syntax.

https://laravel.com/docs/5.2/mail

Basic	“Mailable”	Mail	Usage
Laravel	5.3	introduced	a	new	mail	syntax	called	the	“mailable.”	It	works	the	same	as	the
classic	mail	syntax,	but	instead	of	defining	your	mail	messages	in	a	closure,	you	instead
create	a	specific	PHP	class	to	represent	each	mail.

To	make	a	mailable,	use	the	make:mail	Artisan	command:

php	artisan	make:mail	Assignment

Example	15-2	shows	what	that	class	looks	like.

Example	15-2.	An	autogenerated	mailable	PHP	class
<?php

namespace	App\Mail;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

use	Illuminate\Queue\SerializesModels;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	Assignment	extends	Mailable

{

				use	Queueable,	SerializesModels;

				/**

					*	Create	a	new	message	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Build	the	message.

					*

					*	@return	$this

					*/

				public	function	build()

				{

								return	$this->view('view.name');

				}

}

This	class	probably	looks	familiar	—	it’s	shaped	almost	the	same	as	a	Job.	It	even	imports	the
Queuable	trait	for	queuing	your	mail	and	the	SerializesModels	trait	so	any	Eloquent	models
you	pass	to	the	constructor	will	be	serialized	correctly.

So,	how	does	this	work?	The	build()	method	on	a	mailable	is	where	you’re	going	to	define
which	view	to	use,	what	the	subject	is,	and	anything	else	you	want	to	tweak	about	the	mail
except	who	it’s	going	to.	The	constructor	is	the	place	where	you’ll	pass	in	any	data,	and	any
public	properties	on	your	mailable	class	will	be	available	to	the	template.

Take	a	look	at	Example	15-3	to	see	how	we	might	update	the	autogenerated	mailable	for	our
assignment	example.

Example	15-3.	A	sample	mailable
<?php

namespace	App\Mail;

use	Illuminate\Bus\Queueable;

use	Illuminate\Mail\Mailable;

use	Illuminate\Queue\SerializesModels;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	Assignment	extends	Mailable

{

				use	Queueable,	SerializesModels;

				public	$trainer;

				public	$trainee;

				public	function	__construct($trainer,	$trainee)

				{

								$this->trainer	=	$trainer;

								$this->trainee	=	$trainee;

				}

				public	function	build()

				{

								return	$this->subject('New	assignment	from	'	.	$this->trainer->name)

												->view('emails.assignment');

				}

}

Example	15-4	shows	how	to	send	a	mailable.

Example	15-4.	A	few	ways	to	send	mailables
//	Simple	send

Mail::to($user)->send(new	Assignment($trainer,	$trainee));

//	With	CC/BCC/etc.

Mail::to($user1))

				->cc($user2)

				->bcc($user3)

				->send(new	Assignment($trainer,	$trainee));

//	With	collections

Mail::to('me@app.com')

				->bcc(User::all())

				->send(new	Assignment($trainer,	$trainee))

Mail	Templates
Mail	templates	are	just	like	any	other	template.	They	can	extend	other	templates,	use	sections,
parse	variables,	contain	conditional	or	looping	directives,	and	do	anything	else	you	can	do	in
a	normal	Blade	view.

Take	a	look	at	Example	15-5	to	see	a	possible	emails.assignments	template	for	Example	15-
3.

Example	15-5.	Sample	assignment	email	template
<!--	resources/views/emails/assignment.blade.php	-->

<p>Hey	{{	$trainee->name	}}!</p>

<p>You	have	received	a	new	training	assignment	from	{{	$trainer->name	}}.

Check	out	your	training

dashboard	now!</p>

In	Example	15-3,	both	$trainer	and	$trainee	are	public	properties	on	your	mailable,	which
makes	them	available	to	the	template.

If	you	want	to	explicitly	define	which	variables	are	passed	to	the	template,	you	can	chain	the
with()	method	onto	your	build()	call	as	in	Example	15-6.

Example	15-6.	Customizing	the	template	variables
public	function	build()

{

				return	$this->subject('You	have	a	new	assignment!')

								->view('emails.assignment')

								->with(['assignment'	=>	$this->event->name]);

}

HTML	VERSUS	PLAIN-TEXT	EMAILS
So	far	we’ve	used	the	view()	method	in	our	build()	call	stacks.	This	expects	the	template	we’re	referencing	to
pass	back	HTML.	If	you’d	like	to	pass	a	plain-text	version,	the	text()	method	defines	your	plain-text	view:

public	function	build()

{

				return	$this->view('emails.reminder')

								->text('emails.reminder_plain');

}

Methods	Available	in	build()
Here	are	a	few	of	the	methods	available	to	you	to	customize	your	message	in	the	build()
method	of	your	mailable:

from($address,	$name	=	null)

Sets	the	“from”	name	and	address	—	represents	the	author

subject($subject)

Sets	the	email	subject

attach($pathToFile,	array	$options	=	[])

Attaches	a	file;	valid	options	are	mime	for	MIME	type	and	as	for	display	name

attachData($data,	$name,	array	$options	=	[])

Attaches	a	file	from	a	raw	string;	same	options	as	attach()

priority($priority)

Set	the	email’s	priority,	where	1	is	the	highest	and	5	is	the	lowest

Finally,	if	you	want	to	perform	any	manual	modifications	on	the	underlying	Swift	message,
you	can	do	that	using	withSwiftMessage(),	as	shown	in	Example	15-7.

Example	15-7.	Modifying	the	underlying	SwiftMessage	object
public	function	build()

{

				return	$this->subject('Howdy!')

								->withSwiftMessage(function	($swift)	{

												$swift->setReplyTo('noreply@email.com');

								})

								->view('emails.howdy');

}

Attachments	and	Inline	Images
Example	15-8	shows	two	options	for	how	to	attach	files	or	raw	data	to	your	email.

Example	15-8.	Attaching	files	or	data	to	mailables
//	Attach	a	file	using	the	local	filename

public	function	build()

{

				return	$this->subject('Your	whitepaper	download')

								->attach(storage_path('pdfs/whitepaper.pdf'),	[

												'mime'	=>	'application/pdf',	//	Optional

												'as'	=>	'whitepaper-barasa.pdf'	//	Optional

])

								->view('emails.whitepaper');

}

//	Attach	a	file	passing	the	raw	data

public	function	build()

{

				return	$this->subject('Your	whitepaper	download')

								->attachData(

												file_get_contents(storage_path('pdfs/whitepaper.pdf')),

												'whitepaper-barasa.pdf',

												[

																'mime'	=>	'application/pdf'	//	Optional

]

)

								->view('emails.whitepaper');

}

And	you	can	see	how	to	embed	images	directly	into	your	email	in	Example	15-9.

Example	15-9.	Inlining	images
<!--	emails/image.blade.php	--!>

Here	is	an	image:

embed(storage_path('embed.jpg'))	}}">

Or,	the	same	image	embedding	the	data:

embedData(

				file_get_contents(storage_path('embed.jpg')),	'embed.jpg'

)	}}">

Queues
Sending	email	is	a	time-consuming	task	that	can	cause	applications	to	slow	down,	so	it’s
common	to	move	sending	email	to	a	background	queue.	It’s	so	common,	in	fact,	that	Laravel
has	a	set	of	built-in	tools	to	make	it	easier	to	queue	your	messages	without	writing	queue	jobs
for	each	email.

CONFIGURING	QUEUES
Everything	we’ll	cover	here	requires	your	queues	to	be	configured	correctly.	Take	a	look	at	Chapter	16	to	learn
more	about	how	queues	work	and	how	to	get	them	running	in	your	application.

queue()
To	queue	a	mail	object	instead	of	sending	it	immediately,	simply	pass	your	mailable	object	to
Mail::queue()	instead	of	Mail::send():

Mail::queue(new	Assignment($trainer,	$trainee));

later()
Mail::later()	works	the	same	as	Mail::queue(),	but	it	allows	you	to	add	a	delay	—	either	in
minutes,	or	at	a	specific	time	by	passing	an	instance	of	DateTime	or	Carbon	—	to	when	the
email	will	be	pulled	from	the	queue	and	sent:

$when	=	Carbon::now()->addMinutes(30);

Mail::later($when,	new	Assignment($trainer,	$trainee));

Specifying	the	queue	or	connection
For	both	queue()	and	later(),	if	you’d	like	to	specify	which	queue	or	queue	connection	your
mail	is	added	to,	use	the	onConnection()	and	onQueue()	methods	on	your	mailable	object:

$message	=	(new	Assignment($trainer,	$trainee))

				->onConnection('sqs')

				->onQueue('emails');

Mail::to($user)->queue($message);

Local	Development
This	is	all	well	and	good	for	sending	mail	in	your	production	environments.	But	how	do	you
test	this	all	out?	There	are	three	primary	tools	you’ll	want	to	consider:	Laravel’s	log	driver,	a
Software	as	a	Service	(SaaS)	app	named	Mailtrap,	and	the	“universal	to”	configuration
option.

The	log	driver
Laravel	provides	a	log	driver	that	logs	every	email	you	try	to	send	to	your	local	laravel.log
file	(which	is,	by	default,	in	storage/logs).

If	you	want	to	use	this,	edit	.env	and	set	MAIL_DRIVER	to	log.	Now	open	up	or	tail
storage/logs/laravel.log	and	send	an	email	from	your	app.	You’ll	see	something	like	this:

Message-ID:	<04ee2e97289c68f0c9191f4b04fc0de1@localhost>

Date:	Tue,	17	May	2016	02:52:46	+0000

Subject:	Welcome	to	our	app!

From:	Matt	Stauffer	<matt@mattstauffer.co>

To:	freja@jensen.no

MIME-Version:	1.0

Content-Type:	text/html;	charset=utf-8

Content-Transfer-Encoding:	quoted-printable

Welcome	to	our	app!

Mailtrap.io
Mailtrap	is	a	service	for	capturing	and	inspecting	emails	in	development	environments.	You
send	your	mail	to	the	Mailtrap	servers	via	SMTP,	but	instead	of	sending	those	emails	off	to
the	intended	recipients,	Mailtrap	captures	them	all	and	provides	you	with	a	web-based	email
client	for	inspecting	them,	regardless	of	which	email	address	is	in	the	to	field.

To	set	up	Mailtrap,	sign	up	for	a	free	Mailtrap	account	and	visit	the	base	dashboard	for	your
demo.	Copy	your	username	and	password	from	the	SMTP	column.

Now	edit	your	app’s	.env	file	and	set	the	following	values	in	the	mail	section:

MAIL_DRIVER=smtp

MAIL_HOST=mailtrap.io

MAIL_PORT=2525

MAIL_USERNAME=your_username_from_mailtrap_here

MAIL_PASSWORD=your_password_from_mailtrap_here

MAIL_ENCRYPTION=null

Now,	any	email	you	send	from	your	app	will	show	up	in	your	Mailtrap	inbox.

Universal	to
If	you’d	like	to	inspect	the	emails	in	your	preferred	client,	you	can	override	the	to	field	on
each	message	with	the	“universal	to”	configuration	setting.	To	set	this	up,	add	a	“to”	key	to
your	config/mail.php	file	that	looks	something	like	this:

https://mailtrap.io

'to'	=>	[

				'address'	=>	'matt@mattstauffer.co',

				'name'	=>	'Matt	Testing	My	Application'

],

Note	that	you’ll	need	to	actually	set	up	a	real	email	driver	with	something	like	Mailgun	or
Sendmail	in	order	to	use	this.

Notifications
Most	of	the	mail	that’s	sent	from	web	apps	really	has	the	purpose	of	notifying	users	that	a
particular	action	has	happened	or	needs	to	happen.	As	users’	communication	preferences
grow	more	and	more	diverse,	we	gather	ever	more	—	and	more	disparate	—	packages	to
communicate	via	Slack,	SMS,	and	other	means.

Laravel	5.3	introduced	a	new	concept	in	Laravel	called,	fittingly,	notifications.	Just	like
mailables,	a	notification	is	a	PHP	class	that	represents	a	single	communication	that	you	might
want	to	send	to	your	users.	For	now,	let’s	imagine	we’re	notifying	users	of	our	physical
training	app	that	they	have	a	new	workout	available	on	our	app.

Each	class	represents	all	of	the	information	necessary	to	send	notifications	to	your	users
using	one	or	many	notification	channels.	A	single	notification	could	send	an	email,	send	an
SMS	via	Nexmo,	send	a	WebSockets	ping,	add	a	record	to	a	database,	send	a	message	to	a
Slack	channel,	and	much	more.

So,	let’s	create	our	notification:

php	artisan	make:notification	WorkoutAvailable

Example	15-10	shows	what	that	gives	us.

Example	15-10.	An	autogenerated	notification	class
<?php

namespace	App\Notifications;

use	Illuminate\Bus\Queueable;

use	Illuminate\Notifications\Notification;

use	Illuminate\Contracts\Queue\ShouldQueue;

use	Illuminate\Notifications\Messages\MailMessage;

class	WorkoutAvailable	extends	Notification

{

				use	Queueable;

				/**

					*	Create	a	new	notification	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Get	the	notification's	delivery	channels.

					*

					*	@param		mixed		$notifiable

					*	@return	array

					*/

				public	function	via($notifiable)

				{

								return	['mail'];

				}

				/**

					*	Get	the	mail	representation	of	the	notification.

					*

					*	@param		mixed		$notifiable

					*	@return	\Illuminate\Notifications\Messages\MailMessage

					*/

				public	function	toMail($notifiable)

				{

								return	(new	MailMessage)

																				->line('The	introduction	to	the	notification.')

																				->action('Notification	Action',	'https://laravel.com')

																				->line('Thank	you	for	using	our	application!');

				}

				/**

					*	Get	the	array	representation	of	the	notification.

					*

					*	@param		mixed		$notifiable

					*	@return	array

					*/

				public	function	toArray($notifiable)

				{

								return	[

												//

];

				}

}

We	can	learn	a	few	things	here.	First,	we’re	going	to	pass	in	relevant	data	to	the	constructor.
Second,	there’s	a	via()	method	that	allows	us	to	define,	for	a	given	user,	which	notification
channels	to	use	($notifiable	represents	whatever	entities	you	want	to	notify	in	your	system;
for	most	apps,	it’ll	be	a	user,	but	that’s	not	always	the	case).	And	third,	there	are	individual
methods	for	each	notification	channel	that	allow	you	to	specifically	define	how	to	send	one	of
these	notifications	through	that	channel.

WHEN	WOULD	A	$NOTIFIABLE	NOT	BE	A	USER?
While	the	most	common	notification	targets	will	be	users,	it’s	possible	you	may	want	to	notify	something	else.
This	may	simply	be	because	your	application	has	multiple	user	types	—	so,	you	might	want	to	be	able	to	notify
both	“trainers”	and	“trainees.”	But	you	also	might	find	yourself	wanting	to	notify	a	“group,”	a	“company,”	or	a
“server.”

So,	let’s	modify	this	class	for	our	WorkoutAvailable	example.	Take	a	look	at	Example	15-11.

Example	15-11.	Our	WorkoutAvailable	notification	class
...

class	WorkoutAvailable	extends	Notification

{

				use	Queueable;

				public	$workout;

				public	function	__construct($workout)

				{

								$this->workout	=	$workout;

				}

				public	function	via($notifiable)

				{

								//	This	method	doesn't	exist	on	the	User...	we're	going	to	make	it	up

								return	$notifiable->preferredNotificationChannels();

				}

				public	function	toMail($notifiable)

				{

								return	(new	MailMessage)

												->line('You	have	a	new	workout	available!')

												->action('Check	it	out	now',	route('workout',	[$this->workout]))

												->line('Thank	you	for	training	with	us!');

				}

				public	function	toArray($notifiable)

				{

								return	[];

				}

}

Defining	the	via()	Method	for	Your	Notifiables
As	you	can	see	in	Example	15-11,	we’re	somehow	responsible	for	deciding,	for	each
notification	and	each	notifiable,	which	notification	channels	we’re	going	to	use.

You	could	just	send	everything	as	mail	or	just	send	everything	as	SMS	(Example	15-12).

Example	15-12.	Simplest	possible	via()	method
public	function	via($notifiable)

{

				return	'nexmo';

}

You	could	also	let	each	user	choose	their	one	preferred	method	and	save	that	on	the	User	itself
(Example	15-13).

Example	15-13.	Customizing	the	via()	method	per	user
public	function	via($notifiable)

{

				return	$notifiable->preferred_notification_channel;

}

Or,	as	we	imagined	in	Example	15-11,	you	could	create	a	method	on	each	notifiable	that
allows	for	some	complex	notification	logic.	For	example,	you	could	notify	the	user	over
certain	channels	during	work	hours	and	other	channels	in	the	evening.	What	is	important	is
that	via()	is	a	PHP	class	method,	so	you	can	do	whatever	complex	logic	you	want	there.

Sending	Notifications
There	are	two	ways	to	send	a	notification:	using	the	Notification	facade,	or	adding	the
Notifiable	trait	to	an	Eloquent	class	(likely	your	User	class).

Sending	notifications	using	the	Notifiable	trait
Any	model	that	imports	the	Laravel\Notifications\Notifiable	trait	(which	the	App\User
class	does	by	default)	has	a	notify()	method	that	can	be	passed	a	notification,	which	will
look	like	Example	15-14.

Example	15-14.	Sending	a	notification	using	the	Notifiable	trait
use	App\Notifications\WorkoutAvailable;

...

$user->notify(new	WorkoutAvailable($workout));

Sending	notifications	with	the	Notification	facade
The	Notification	facade	is	the	clumsier	of	the	two	methods,	since	you	have	to	pass	both	the
notifiable	and	the	notification.	However,	it’s	helpful	because	you	can	choose	to	pass	more
than	one	notifiable	in	at	the	same	time,	like	you	can	see	in	Example	15-15.

Example	15-15.	Sending	notifications	using	the	Notification	facade
use	App\Notifications\WorkoutAvailable;

...

Notification::send($users,	new	WorkoutAvailable($workout));

Queueing	Notifications
Most	of	the	notification	drivers	need	to	send	HTTP	requests	to	send	their	notifications,	which
could	slow	down	your	user	experience,	so	you	probably	want	to	queue	your	notifications.	All
notifications	import	the	Queuable	trait	by	default,	so	all	you	need	to	do	is	add	implements
ShouldQueue	to	your	notification	and	Laravel	will	instantly	move	it	to	a	queue.

As	with	any	other	queued	features,	you’ll	need	to	make	sure	you	have	your	queue	settings
configured	correctly	and	a	queue	worker	running.

If	you’d	like	to	delay	the	delivery	of	your	notifcation,	you	can	run	the	delay()	method	on	the
notification:

$delayUntil	=	Carbon::now()->addMinutes(15);

$user->notify((new	WorkoutAvailable($workout))->delay($delayUntil));

Out-of-the-Box	Notification	Types
Out	of	the	box,	Laravel	comes	with	notification	drivers	for	email,	database,	broadcast,
Nexmo	SMS,	and	Slack.	I’ll	cover	each	briefly,	but	I’d	recommend	referring	to	the	docs	for
more	thorough	introductions	to	each.

It’s	also	easy	to	create	your	own	notification	drivers,	and	dozens	of	people	already	have;	you
can	find	them	at	Laravel	Notification	Channels	website.

Email	notifications
Let’s	take	a	look	at	how	the	email	from	our	earlier	example,	Example	15-11,	is	built:

public	function	toMail($notifiable)

{

				return	(new	MailMessage)

								->line('You	have	a	new	workout	available!')

								->action('Check	it	out	now',	route('workout',	[$this->workout]))

								->line('Thank	you	for	training	with	us!');

}

The	result	is	shown	in	Figure	15-1.	The	email	notification	system	puts	your	application’s
name	in	the	header	of	the	email;	you	can	customize	that	app	name	in	the	name	key	of
config/app.php.

This	email	is	automatically	sent	to	the	email	property	on	the	notifiable,	but	you	can	customize
this	behavior	by	adding	a	method	to	your	notifiable	class	named
routeNotificationForMail()	that	returns	the	email	address	you’d	like	email	notifications
sent	to.

The	email’s	subject	is	set	by	parsing	the	notification	class	name	and	converting	it	to	words.
So,	our	WorkoutAvailable	notification	would	have	the	default	subject	of	Workout	Available.
We	can	also	customize	this	by	chaining	the	subject()	method	on	our	MailMessage	in	the
toMail()	method.

If	you	want	to	modify	the	templates,	publish	them	and	edit	to	your	heart’s	content:

php	artisan	vendor:publish	--tag=laravel-notifications

You	can	also	change	the	style	of	the	default	template	to	be	an	“error”	message,	which	uses	a
bit	of	different	language	and	changes	the	primary	button	color	to	red.	Just	add	a	call	to	the
error()	method	to	your	MailMessage	call	chain	in	the	toMail()	method.

https://laravel.com/docs/notifications
http://laravel-notification-channels.com/

Figure	15-1.	An	email	sent	with	the	default	notification	template

Database	notifications
You	can	send	notifications	to	a	database	table	using	the	database	notification	channel.	First,
create	your	table	with	php	artisan	notifications:table.	Next,	create	a	toDatabase()
method	on	your	notification	and	return	an	array	of	data	there.	This	data	will	be	encoded	as
JSON	and	stored	in	the	database	table’s	data	column.

The	Notifiable	trait	adds	a	notifications	relationship	to	any	model	it’s	imported	in,
allowing	you	to	easily	access	records	in	the	notifications	table.	So	if	you’re	using	database
notifications,	you	could	so	something	like	this:

User::first()->notifications->each(function	($notification)	{

				//	do	something

});

The	database	notification	channel	also	has	the	concept	of	whether	or	not	a	notification	is
“read.”	You	can	scope	to	only	the	“unread”	notifications:

User::first()->unreadNotifications->each(function	($notification)	{

				//	do	something

});

And	you	can	mark	one	or	all	notifications	as	read:

//	Individual

User::first()->notifications->each(function	($notification)	{

				if	($condition)	{

								$notification->markAsRead();

				}

});

//	All

User::first()->unreadNotifications->markAsRead();

Broadcast	notifications
The	broadcast	channel	sends	notifications	out	using	Laravel’s	event	broadcasting	features
(Echo).

Create	a	toBroadcast()	method	on	your	notification	and	return	array	of	data,	and	if	your	app
is	correctly	configured	for	event	broadcasting,	that	data	will	be	broadcast	on	a	private	channel
named	{notifiable}.{id}.	The	{id}	will	be	the	ID	of	the	notifiable,	and	{notifiable}	will
be	the	notifiable’s	fully	qualified	class	name,	with	the	slashes	replaced	by	periods	—	for
example,	the	private	channel	for	the	App\User	with	the	ID	of	1	will	be	App.User.1.

SMS	notifications
SMS	notifications	are	sent	via	Nexmo,	so	if	you	want	to	send	SMS	notifications,	sign	up	for	a
Nexmo	account	and	follow	the	instructions	in	the	docs.	Like	with	the	other	channels,	you’ll	be
setting	up	a	toNexmo()	method	and	customizing	the	SMS	message	there.

Slack	notifications
The	slack	notification	channel	allows	you	to	customize	the	appearance	of	your	notifications
and	even	attach	files	to	your	notifications.	Like	with	the	other	channels,	you’ll	set	up	a
toSlack()	method	and	customize	the	message	there.

https://laravel.com/docs/notifications

Testing
Let’s	take	a	look	at	how	to	test	mail	and	notifications.

Mail
There	are	two	options	for	testing	mail	in	Laravel.	If	you’re	using	the	traditional	mail	syntax,
I’d	recommend	using	a	tool	called	MailThief,	which	Adam	Wathan	wrote	for	Tighten.	Once
you	bring	MailThief	into	your	application	with	Composer,	you	can	use	MailThief::hijack()
in	your	tests	to	make	MailThief	capture	any	calls	to	the	Mail	facade	or	any	mailer	classes.

MailThief	then	makes	it	possible	to	make	assertions	against	the	senders,	recipients,	CC	and
BCC	values,	and	even	content	and	attachments	of	your	mail.	Take	a	look	at	the	GitHub	repo	to
learn	more,	or	bring	it	into	your	app:

composer	require	tightenco/mailthief	--dev

If	you	are	using	mailables,	there’s	a	simple	syntax	for	writing	assertions	against	your	sent
mail	(Example	15-16).

Example	15-16.	Asserting	against	mailables
public	function	test_signup_triggers_welcome_email()

{

				...

				Mail::assertSent(WelcomeEmail::class,	function	($e)	{

								return	$e->subject	==	'Welcome!';

				});

				//	You	can	also	use	assertSentTo()	to	explicitly	test	the	recipients

}

https://github.com/tightenco/mailthief

Notifications
Laravel	provides	a	built-in	set	of	assertions	for	testing	your	notifications.	Example	15-17
demonstrates.

Example	15-17.	Asserting	notifications	were	sent
public	function	test_new_signups_triggers_admin_notification()

{

				...

				Notification::assertSentTo($user,	NewUsersSignedup::class,

								function	($n,	$channels)	{

												return	$n->user->email	==	'user-who-signed-up@gmail.com'

												&&	$channels	==	['mail'];

				});

				//	You	can	also	use	assertNotSentTo()

}

TL;DR
Laravel’s	mail	and	notification	features	provide	simple,	consistent	interfaces	to	a	variety	of
messaging	systems.	Laravel’s	mail	system	uses	“mailables,”	PHP	classes	that	represent
emails,	to	provide	a	consistent	syntax	to	different	mail	drivers.	The	notification	system	makes
it	easy	to	build	a	single	notification	that	can	be	delivered	in	many	different	media	—	from
emails	to	SMS	messages	to	physical	postcards.

Chapter	16.	Queues,	Jobs,	Events,
Broadcasting,	and	the	Scheduler

So	far	we’ve	covered	some	of	the	most	common	structures	that	power	web	applications:
databases,	mail,	filesystems,	and	more.	Each	of	these	are	common	across	a	majority	of
applications	and	frameworks.

Laravel	also	provides	facilities	for	some	less	common	architecture	patterns	and	application
structures.	In	this	chapter	we’ll	cover	Laravel’s	tools	for	implementing	queues,	queued	jobs,
events,	and	WebSocket	event	publishing.	We’ll	also	cover	Laravel’s	scheduler,	which	makes
cron	a	thing	of	the	past.

Queues
To	understand	what	a	queue	is,	just	think	about	the	idea	of	“queueing	up”	in	a	line	at	the	bank.
Even	if	there	are	multiple	lines	—	queues	—	only	one	person	is	being	served	at	a	time	from
each	queue,	and	each	person	will	eventually	reach	the	front	and	be	served.	In	some	banks,	it’s
a	strict	first-in-first-out	sort	of	policy,	but	in	other	banks,	there’s	not	an	exact	guarantee	that
someone	won’t	cut	ahead	of	you	in	line	at	some	point.	Essentially,	someone	can	get	added	to
the	queue,	be	removed	from	the	queue	prematurely,	or	be	successfully	“processed”	and	then
removed.	Someone	might	even	hit	the	front	of	the	queue,	not	be	able	to	be	served	correctly,
return	to	the	queue	for	a	time,	and	then	be	processed	again.

Queues	in	programming	are	very	similar.	Your	application	adds	a	“job”	to	a	queue,	which	is	a
chunk	of	code	that	tells	the	application	how	to	perform	a	particular	behavior.	Then	some
other	separate	application	structure,	usually	a	“queue	worker,”	takes	the	responsibility	for
pulling	jobs	off	of	the	queue	one	at	a	time	and	performing	the	appropriate	behavior.	Queue
workers	can	delete	the	jobs,	return	them	to	the	queue	with	a	delay,	or	mark	them	as
successfully	processed.

Laravel	makes	it	easy	to	serve	your	queues	using	Redis,	beanstalkd,	Amazon’s	SQS	(Simple
Queue	Service),	or	a	database	table.	You	can	also	choose	the	sync	driver	to	have	the	jobs	run
right	in	your	application	without	actually	being	queued,	or	the	null	driver	for	jobs	to	just	be
discarded;	these	two	are	usually	used	in	local	development	or	testing	environments.

Why	Queues?
Queues	make	it	easy	to	remove	a	costly	or	slow	process	from	any	synchronous	call.	The	most
common	example	is	sending	mail	—	doing	so	can	be	slow,	and	you	don’t	want	your	users	to
have	to	wait	for	mail	to	send	in	response	to	their	actions.	Instead,	trigger	a	“send	mail”
queued	job	and	let	the	users	get	on	with	their	day.	Sometimes	you	may	not	just	want	to	save
your	users	time,	but	you	might	have	a	process	like	a	cron	job	or	a	webhook	that	has	a	lot	of
work	to	process;	rather	than	letting	it	all	run	at	once	(and	potentially	time	out),	you	may
choose	to	queue	its	individual	pieces	and	let	the	queue	worker	process	them	one	at	a	time.

Additionally,	if	you	have	some	heavy	processing	that’s	more	than	your	server	can	handle,	you
can	spin	up	more	than	one	queue	worker	to	work	through	your	queue	faster	than	your	normal
application	server	could	on	its	own.

Basic	Queue	Configuration
Like	many	other	Laravel	features	that	abstract	multiple	providers,	queues	have	their	own
dedicated	config	file	(config/queue.php)	that	allows	you	to	set	up	multiple	drivers	and	define
which	will	be	the	default.	This	is	also	where	you’ll	store	your	SQS,	Redis,	or	beanstalkd
authentication	information.

SIMPLE	BEANSTALKD	QUEUES	ON	LARAVEL	FORGE
We	haven’t	covered	Laravel	Forge	in	much	depth,	but	it’s	a	hosting	service	provided	by	Taylor	Otwell,	the
creator	of	Laravel.	Every	server	you	create	has	beanstalkd	configured	automatically,	so	if	you	visit	any	site’s
Forge	console,	you	can	just	go	to	the	Queue	Workers	tab	and	hit	Start	Worker	and	you’re	ready	to	use
beanstalkd	as	your	queue	driver;	you	can	leave	all	the	default	settings,	and	no	other	work	is	necessary.

http://forge.laravel.com/

Queued	Jobs
Remember	our	bank	analogy?	Each	person	in	the	bank	“queue”	(line)	is,	in	programming
terms,	a	job.	This	job	could	be	shaped	any	way;	it	could	just	be	a	string,	or	an	array,	or	an
object.	In	Laravel,	it’s	a	collection	of	information	containing	the	job	name,	the	data	payload,
the	number	of	attempts	that	have	been	made	so	far	to	process	this	job,	and	some	other	simple
metadata.

But	you	don’t	need	to	worry	about	that	in	your	interactions	with	Laravel.	Laravel	provides	a
structure	called	a	Job,	which	is	intended	to	encapsulate	a	single	task	—	a	behavior	that	your
application	can	be	commanded	to	do	—	and	allow	it	to	be	added	to	and	pulled	from	a	queue.
There	are	also	simple	helpers	to	make	it	easy	to	queue	Artisan	commands	and	mail.

Let’s	start	with	an	example	where,	every	time	a	user	changes	his	plan	with	your	SaaS	app,	you
want	to	rerun	some	calculations	about	your	overall	profit.

Creating	a	job
As	always,	there’s	an	Artisan	command	for	that:

php	artisan	make:job	CrunchReports

Take	a	look	at	Example	16-1	to	see	what	you’ll	get.

Example	16-1.	The	default	template	for	jobs	in	Laravel
<?php

use	Illuminate\Bus\Queueable;

use	Illuminate\Queue\SerializesModels;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	CrunchReports	implements	ShouldQueue

{

				use	InteractsWithQueue,	Queueable,	SerializesModels;

				/**

					*	Create	a	new	job	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Execute	the	job.

					*

					*	@return	void

					*/

				public	function	handle()

				{

								//

				}

}

As	you	can	see,	this	template	imports	the	Queueable,	InteractsWithQueue,	and

SerializesModels	traits,	and	implements	the	ShouldQueue	interface.	Prior	to	Laravel	5.3,
some	of	this	functionality	came	in	through	the	parent	App\Jobs	class.

We	also	get	two	methods	from	this	template:	the	constructor,	which	you’ll	want	to	use	to
attach	data	to	the	job,	and	the	handle()	method,	which	is	where	the	job’s	logic	should	reside
(and	is	also	the	method	signature	you’ll	use	to	inject	dependencies).

The	traits	and	interface	provide	the	class	with	the	ability	to	be	added	to,	and	interact	with,	the
queue.	Queueable	allows	you	to	specify	how	Laravel	should	push	this	job	to	the	queue;
InteractsWithQueue	allows	each	job,	while	being	handled,	to	control	its	relationship	with	the
queue,	including	deleting	or	requeueing	itself;	and	SerializesModels	gives	the	job	the	ability
to	serialize	and	deserialize	Eloquent	models.

SERIALIZING	MODELS
The	SerializesModels	trait	gives	the	jobs	the	ability	to	serialize	injected	models	so	that	your	job’s	handle()
method	will	have	access	to	them.	However,	because	it’s	too	difficult	to	reliably	serialize	an	entire	Eloquent
object,	the	trait	ensures	that	just	the	primary	keys	of	any	attached	Eloquent	objects	are	serialized	when	the	job	is
pushed	onto	the	queue.	When	the	job	is	deserialized	and	handled,	the	trait	pulls	those	Eloquent	models	fresh	from
the	database	by	their	primary	key.	This	means	that	when	your	job	runs	it	will	be	pulling	a	fresh	instance	of	this
model,	not	whatever	state	it	was	in	when	you	queued	the	job.

Let’s	fill	out	the	methods	for	our	sample	class,	as	in	Example	16-2.

Example	16-2.	An	example	job
...

use	App\ReportGenerator;

use	Illuminate\Log\Writer	as	Logger;

class	CrunchReports	implements	ShouldQueue

{

				use	InteractsWithQueue,	SerializesModels;

				protected	$user;

				public	function	__construct($user)

				{

								$this->user	=	$user;

				}

				public	function	handle(ReportGenerator	$generator,	Logger	$logger)

				{

								$generator->generateReportsForUser($this->user);

								$logger->info('Generated	reports.');

				}

}

We’re	expecting	the	User	instance	to	be	injected	when	we	create	the	job,	and	then	when	it’s
handled	we’re	typehinting	a	ReportGenerator	class	(which	we	presumably	wrote)	and	a
Logger	(which	Laravel	provides).	Laravel	will	read	both	typehints	and	inject	those
dependencies	automatically.

Pushing	a	job	onto	a	queue
There	are	two	primary	ways	you	can	push	a	job	onto	a	queue:	the	global	dispatch()	helper
and	the	methods	provided	by	the	DispatchesJobs	trait,	which	is	imported	by	default	in	every
controller.

With	each,	create	an	instance	of	your	job,	attach	any	necessary	data	by	passing	it	to	the
constructor,	and	pass	it	to	the	dispatch()	method	(see	Example	16-3).

Example	16-3.	Dispatching	jobs
//	In	a	controller

public	function	index()

{

				$user	=	auth()->user();

				$this->dispatch(new	\App\Jobs\CrunchReports($user));

}

//	Elsewhere

dispatch(new	\App\Jobs\CrunchReports($user));

There	are	three	settings	you	can	control	in	order	to	customize	exactly	how	you	dispatch	a	job:
the	connection,	the	queue,	and	the	delay.

Customizing	the	connection
If	you	ever	have	multiple	queue	connections	in	place	at	once,	you	can	customize	the
connection	by	running	onConnection()	on	your	instantiated	job:

dispatch((new	DoThingJob)->onConnection('redis'));

Customizing	the	queue
Within	queue	servers,	you	can	specify	which	named	queue	you’re	pushing	a	job	onto.	For
example,	you	may	differentiate	your	queues	based	on	their	importance,	naming	one	low	and
one	high.

You	can	customize	which	queue	you’re	pushing	a	job	onto	with	the	onQueue()	method:

dispatch((new	DoThingJob)->onQueue('high'));

Customizing	the	delay
You	can	customize	the	amount	of	time	your	queue	workers	should	wait	before	processing	a
job	with	the	delay()	method,	which	accepts	an	integer	representing	the	number	of	seconds	to
delay	a	job:

//	Delays	one	minute	before	releasing	the	job	to	queue	workers

dispatch((new	DoThingJob)->delay(60));

Note	that	Amazon	SQS	doesn’t	allow	delays	longer	than	15	minutes.

Running	a	Queue	Worker
So	what	is	a	queue	worker,	and	how	does	it	work?	In	Laravel,	it’s	an	Artisan	command	that
stays	running	forever	(until	it’s	stopped	manually)	and	takes	the	responsibility	for	pulling
down	jobs	from	your	queue	and	running	them:

php	artisan	queue:work

This	command	starts	a	daemon	“listening”	to	your	queue;	every	time	there	are	jobs	on	the
queue,	it	will	pull	down	the	first	job,	handle	it,	delete	it,	and	move	on	to	the	next.	If	at	any
point	there	are	no	jobs,	it	“sleeps”	for	a	configurable	amount	of	time	before	checking	again
to	see	if	there	are	any	more	jobs.

You	can	define	how	many	seconds	a	job	should	be	able	to	run	before	the	queue	listener	stops
it	(--timeout),	how	many	seconds	the	listener	should	“sleep”	when	there	are	no	jobs	left	(--
sleep),	how	many	tries	each	job	should	be	allowed	before	being	deleted	(--tries),	which
connection	the	worker	should	listen	to	(the	first	parameter	after	queue:work),	and	which
queues	it	should	listen	to	(--queue=):

php	artisan	queue:work	redis	--timeout=60	--sleep=15	--tries=3

--queue=high,medium

You	can	also	process	just	a	single	job	with	php	artisan	queue:work.

Handling	Errors
So,	what	happens	when	something	goes	wrong	with	your	job	when	it’s	in	the	middle	of
processing?

Exceptions	in	handling
If	an	exception	is	thrown,	the	queue	listener	will	release	that	job	back	onto	the	queue.	That	job
will	be	rereleased	to	be	processed	again	and	again	until	it	is	able	to	finish	successfully	or	until
it	has	been	attempted	the	maximum	number	of	times	allowed	by	your	queue	listener.

Limiting	the	number	of	tries
The	maximum	number	of	tries	is	defined	by	the	--tries	switch	passed	to	the	queue:listen	or
queue:work	Artisan	commands.

THE	DANGER	OF	INFINITE	RETRIES
If	you	don’t	set	--tries,	or	if	you	set	it	to	0,	the	queue	listener	will	allow	for	infinite	retries.	That	means	if	there
are	any	circumstances	in	which	a	job	could	just	never	be	satisfied	—	for	example,	if	it	relies	on	a	tweet	that	has
since	been	deleted	—	your	app	will	slowly	crawl	to	a	halt	as	it	forever	retries	uncompletable	jobs.

The	documentation	and	Laravel	Forge	both	show	3	as	the	default	starting	point	for	the	maximum	number	of	retries.
So,	in	case	of	confusion,	start	there	and	adjust:

php	artisan	queue:listen	--tries=3

If	at	any	point	you’d	like	to	check	how	many	times	a	job	has	been	attempted	already,	use	the
attempts()	method	on	the	job	itself,	as	in	Example	16-4.

Example	16-4.	Checking	how	many	times	a	job	has	already	been	tried
public	function	handle()

{

				...

				if	($this->attempts()	>	3)	{

								//

				}

}

Handling	failed	jobs
Once	a	job	has	exceeded	its	allowable	number	of	retries,	it’s	considered	a	“failed”	job.	Before
you	do	anything	else	—	even	if	all	you	want	to	do	is	limit	the	number	of	times	a	job	can	be
tried	—	you’ll	need	to	create	the	“failed	jobs”	database	table.

There’s	an	Artisan	command	to	create	the	migration	(and	you’ll	then	want	to	migrate):

php	artisan	queue:failed-table

php	artisan	migrate

Any	job	that	has	surpassed	its	maximum	number	of	allowed	attempts	will	be	dumped	there.
But	there	are	quite	a	few	things	you	can	do	with	your	failed	jobs.

First,	you	can	define	a	failed()	method	on	the	job	itself,	which	will	run	when	that	job	fails
(see	Example	16-5).

Example	16-5.	Defining	a	method	to	run	when	a	job	fails
...

class	CrunchReports	implements	ShouldQueue

{

				...

				public	function	failed()

				{

								//	Do	whatever	you	want

				}

}

Next,	you	can	register	a	global	handler	for	failed	jobs.	Somewhere	in	the	application’s

bootstrap	—	if	you	don’t	know	where	to	put	it,	just	put	it	in	the	boot()	method	of
AppServiceProvider	—	place	the	code	in	Example	16-6	code	to	define	a	listener.

Example	16-6.	Registering	a	global	handler	to	handle	failed	jobs
//	Some	service	provider

use	Illuminate\Support\Facades\Queue;

...

				public	function	boot()

				{

								Queue::failing(function	($connection,	$job,	$data)	{

												//	Do	whatever	you	want

								});

				}

There	is	also	a	suite	of	Artisan	tools	for	interacting	with	the	failed	jobs	table.

queue:failed	shows	you	a	list	of	your	failed	jobs:

php	artisan	queue:failed

The	list	will	look	something	like	this:

+----+------------+---------+----------------------+---------------------+

|	ID	|	Connection	|	Queue			|	Class																|	Failed	At											|

+----+------------+---------+----------------------+---------------------+

|	9		|	database			|	default	|	App/Jobs/AlwaysFails	|	2016-01-26	03:42:55	|

+----+------------+---------+----------------------+---------------------+

From	there,	you	can	grab	the	ID	of	any	individual	failed	job	and	retry	it	with	queue:retry:

php	artisan	queue:retry	9

If	you’d	rather	retry	all	of	the	jobs,	pass	all	instead	of	an	ID:

php	artisan	queue:retry	all

You	can	delete	an	individual	failed	job	with	queue:forget:

php	artisan	queue:forget	5

And	you	can	delete	all	of	your	failed	jobs	with	queue:flush:

php	artisan	queue:flush

Controlling	the	Queue
Sometimes,	from	within	the	handling	of	a	job,	you’ll	want	to	add	conditions	that	will
potentially	either	release	the	job	to	be	restarted	later	or	delete	the	job	forever.

To	release	a	job	back	into	the	queue,	use	the	release()	command,	as	in	Example	16-7.

Example	16-7.	Releasing	a	job	back	onto	the	queue
public	function	handle()

{

				...

				if	(condition)	{

								$this->release($numberOfSecondsToDelayBeforeRetrying);

				}

}

If	you	want	to	delete	a	job	during	its	handling,	you	can	just	return	at	any	point,	as	seen	in
Example	16-8;	that’s	the	signal	to	the	queue	that	the	job	was	handled	appropriately	and	should
not	be	returned	to	the	queue.

Example	16-8.	Deleting	a	job
public	function	handle()

{

				...

				if	($jobShouldBeDeleted)	{

								return;

				}

}

Queues	Supporting	Other	Functions
The	primary	use	for	queues	is	to	push	jobs	onto,	but	you	can	also	queue	mail	using	the
Mail::queue	functionality.	You	can	learn	more	about	this	in	“queue()”.	You	can	also	queue
Artisan	commands,	which	we	covered	in	Chapter	7.

Events
With	jobs,	the	calling	code	informs	the	application	that	it	should	do	something:
CrunchReports,	or	NotifyAdminOfNewSignup.

With	an	event,	the	calling	code	instead	informs	the	application	that	something	happened:
UserSubscribed,	or	UserSignedUp,	or	ContactWasAdded.	Events	are	notifications	that
something	has	taken	place.

Some	of	these	events	may	be	“fired”	by	the	framework	itself.	For	example,	Eloquent	models
fire	events	when	they	are	saved,	or	created,	or	deleted.	But	some	events	are	also	manually
triggered	by	the	application’s	code.

An	event	being	fired	doesn’t	do	anything	on	its	own.	However,	you	can	bind	event	listeners,
whose	sole	purpose	is	to	listen	for	the	broadcasting	of	specific	events	and	to	act	in	response.
Any	event	can	have	anywhere	from	zero	to	many	event	listeners.

Laravel’s	events	are	structured	like	the	observer,	or	“pub/sub,”	pattern.	Many	events	are	fired
out	into	the	application;	some	may	never	be	listened	for,	and	others	may	have	a	dozen
listeners.	The	events	don’t	know	or	care.

Firing	an	Event
There	are	three	ways	to	fire	an	event.	You	can	use	the	Event	facade,	inject	the	Dispatcher,	or
use	the	event()	global	helper:

Event::fire(new	UserSubscribed($user,	$plan));

//	or

$dispatcher	=	app(Illuminate\Contracts\Events\Dispatcher);

$dispatcher->fire(new	UserSubscribed($user,	$plan));

//	or

event(new	UserSubscribed($user,	$plan));

If	in	doubt,	I’d	recommend	using	the	global	helper	function.

To	create	an	event	to	fire,	use	the	make:event	Artisan	command:

php	artisan	make:event	UserSubscribed

That’ll	make	a	file	that	looks	something	like	Example	16-9.

Example	16-9.	The	default	template	for	a	Laravel	event
<?php

namespace	App\Events;

use	Illuminate\Broadcasting\Channel;

use	Illuminate\Queue\SerializesModels;

use	Illuminate\Broadcasting\PrivateChannel;

use	Illuminate\Broadcasting\PresenceChannel;

use	Illuminate\Broadcasting\InteractsWithSockets;

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class	UserSubscribed

{

				use	InteractsWithSockets,	SerializesModels;

				/**

					*	Create	a	new	event	instance.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Get	the	channels	the	event	should	be	broadcast	on.

					*

					*	@return	Channel|array

					*/

				public	function	broadcastOn()

				{

								return	new	PrivateChannel('channel-name');

				}

}

Let’s	take	a	look	at	what	we	get	here.	SerializesModels	works	just	like	with	jobs;	it	allows
you	to	accept	Eloquent	models	as	parameters.	InteractsWithSockets,	ShouldBroadcast,	and
the	broadcastOn()	method	provide	the	backing	functionality	for	broadcasting	events	using

WebSockets,	which	we’ll	cover	in	a	bit.

It	might	seem	strange	that	there’s	no	handle()	or	fire()	method	here.	But	remember,	this
object	exists	not	to	determine	a	particular	action,	but	just	to	encapsulate	some	data.	The	first
piece	of	data	is	its	name;	UserSubscribed	tells	us	that	a	particular	event	happened	(a	user
subscribed).	The	rest	of	the	data	is	any	data	we	pass	into	the	constructor	and	associate	with	this
entity.

Example	16-10	shows	what	we	might	want	to	do	with	our	UserSubscribed	event.

Example	16-10.	Injecting	data	into	an	event
...

class	UserSubscribed

{

				use	InteractsWithSockets,	SerializesModels;

				public	$user;

				public	$plan;

				public	function	__construct($user,	$plan)

				{

								$this->user	=	$user;

								$this->plan	=	$plan;

				}

}

Now	we	have	an	object	that	appropriately	represents	the	event	that	happened:	$event->user
subscribed	to	the	$event->plan	plan.

Listening	for	an	Event
We	have	an	event,	and	the	ability	to	fire	it.	Now	let’s	look	at	how	to	listen	for	it.

First,	we’ll	create	an	event	listener.	Let’s	say	we	want	to	email	the	app’s	owner	every	time	a
new	user	subscribes:

php	artisan	make:listener	EmailOwnerAboutSubscription	--event=UserSubscribed

That	gives	us	the	file	in	Example	16-11.

Example	16-11.	The	default	template	for	a	Laravel	event	listener
<?php

namespace	App\Listeners;

use	App\Events\UserSubscribed;

use	Illuminate\Queue\InteractsWithQueue;

use	Illuminate\Contracts\Queue\ShouldQueue;

class	EmailOwnerAboutSubscription

{

				/**

					*	Create	the	event	listener.

					*

					*	@return	void

					*/

				public	function	__construct()

				{

								//

				}

				/**

					*	Handle	the	event.

					*

					*	@param		UserSubscribed		$event

					*	@return	void

					*/

				public	function	handle(UserSubscribed	$event)

				{

								//

				}

}

This	is	where	the	action	happens	—	where	the	handle()	method	lives.	This	method	expects	to
be	passed	an	event	of	type	UserSubscribed	and	act	in	response	to	it.

So,	let’s	make	it	send	an	email	(Example	16-12).

Example	16-12.	A	sample	event	listener
...

use	Illuminate\Contracts\Mail\Mailer;

class	EmailOwnerAboutSubscription

{

				protected	$mailer;

				public	function	__construct(Mailer	$mailer)

				{

								$this->mailer	=	$mailer;

				}

				public	function	handle(UserSubscribed	$event)

				{

								$this->mailer->send(

												new	OwnerSubscriptionEmail($event->user,	$event->plan)

);

				}

}

Great!	Now,	one	last	task:	we	need	to	set	this	listener	up	to	listen	to	the	UserSubscribed	event.
We’ll	set	that	up	in	the	$listen	property	of	the	EventServiceProvider	class	(see	Example	16-
13).

Example	16-13.	Binding	listeners	to	events	in	EventServiceProvider
class	EventServiceProvider	extends	ServiceProvider

{

				protected	$listen	=	[

								\App\Events\UserSubscribed::class	=>	[

												\App\Listeners\EmailOwnerAboutSubscription::class,

],

];

As	you	can	see,	the	key	of	each	array	entry	is	the	class	name	of	the	event,	and	the	value	is	an
array	of	listener	class	names.	We	can	add	as	many	class	names	as	we	want	under	the
UserSubscribed	key	and	they	will	all	listen	and	respond	to	each	UserSubscribed	event.

Event	subscribers
There’s	one	more	structure	you	can	use	to	define	the	relationship	between	your	events	and
their	listeners.	Laravel	has	a	concept	called	an	event	subscriber,	which	is	a	class	that	contains
a	collection	of	methods	that	act	as	separate	listeners	to	unique	events,	and	also	contains	the
mapping	of	which	method	should	handle	which	event.	In	this	case,	it’s	easier	to	show	than	to
tell;	take	a	look	at	Example	16-14.

Example	16-14.	A	sample	event	subscriber
<?php

namespace	App\Listeners;

class	UserEventSubscriber

{

				public	function	onUserSubscription($event)

				{

								//	Handles	the	UserSubscribed	event

				}

				public	function	onUserCancellation($event)

				{

								//	Handles	the	UserCancelled	event

				}

				public	function	subscribe($events)

				{

								$events->listen(

												\App\Events\UserSubscribed::class,

												'App\Listeners\UserEventSubscriber@onUserSubscription'

);

								$events->listen(

												\App\Events\UserCancelled::class,

												'App\Listeners\UserEventSubscriber@onUserCancellation'

);

				}

}

Subscribers	need	to	define	a	subscribe()	method,	which	is	passed	an	instance	of	the	event
dispatcher.	We’ll	use	that	to	pair	events	with	their	listeners,	but	in	this	case,	those	are	methods
on	this	class,	instead	of	entire	classes.	As	a	refresher,	any	time	you	see	an	@	inline	like	this
means	the	class	name	is	to	the	left	of	the	@	and	the	method	name	is	to	the	right.

So,	in	Example	16-14,	we’re	defining	that	the	onUserSubscription()	method	of	this
subscriber	will	listen	to	any	UserSubscribed	events.

There’s	one	last	thing	we	need	to	do:	in	App\Providers\EventServiceProvider,	we	need	to
add	our	subscriber ’s	class	name	to	the	$subscribe	property,	as	seen	in	Example	16-15.

Example	16-15.	Registering	an	event	subscriber
...

class	EventServiceProvider	extends	ServiceProvider

{

				...

				protected	$subscribe	=	[

								\App\Listeners\UserEventSubscriber::class

];

}

Broadcasting	Events	over	WebSockets,	and	Laravel	Echo
WebSocket	(often	called	WebSockets)	is	a	protocol,	popularized	by	Pusher,	that	makes	it
simple	to	provide	near-real-time	communication	between	web	devices.	Rather	than	relying	on
information	passing	via	HTTP	requests,	WebSockets	libraries	open	a	direct	connection
between	the	client	and	the	server.	WebSockets	are	behind	tools	like	the	chat	boxes	in	Gmail
and	Facebook.

WebSockets	work	best	with	small	pieces	of	data	passed	in	a	pub/sub	structure	—	just	like
Laravel’s	events.	Laravel	has	a	built-in	set	of	tools	that	make	it	easy	to	define	that	one	or	more
of	your	events	should	be	broadcast	to	a	WebSocket	server;	this	makes	it	easy,	for	example,	to
have	a	MessageWasReceived	event	that	is	published	to	the	notifications	box	of	a	certain	user	or
set	of	users,	the	instant	a	message	arrives	at	your	application.

LARAVEL	ECHO

Laravel	also	has	a	more	powerful	tool	designed	for	more	complex	event	broadcasting.	If	you	need	presence	notification,
or	want	to	keep	your	rich	frontend	data	model	in	sync	with	your	Laravel	app,	check	out	Laravel	Echo,	which	we’ll	cover
toward	the	end	of	this	chapter.	Much	of	what	comprises	Echo	is	built	into	the	Laravel	core,	which	we	cover	in	“Advanced
Broadcasting	Tools”,	but	some	of	it	requires	pulling	in	the	external	JavaScript	Echo	library,	which	we	cover	in	“Laravel
Echo	(the	JavaScript	Side)”.

Configuration	and	Setup
Take	a	look	at	config/broadcasting.php	to	find	the	configuration	settings	for	your	event
broadcasting.	Laravel	supports	three	drivers	for	broadcasting:	Pusher,	a	paid	SaaS	offering;
Redis,	for	locally	run	WebSocket	servers;	and	log,	for	local	development	and	debugging.

QUEUE	LISTENERS
In	order	for	event	broadcasting	to	move	quickly,	Laravel	pushes	the	instruction	to	broadcast	them	onto	a	queue.
That	means	you’ll	need	to	have	a	queue	worker	running	(or	use	the	sync	queue	driver	for	local	development).
See	“Running	a	Queue	Worker”	to	learn	how	to	run	a	queue	worker.

Laravel	suggests	a	default	delay	of	three	seconds	before	the	queue	worker	looks	for	new	jobs.	However,	with
event	broadcasting,	you	may	notice	some	events	take	a	second	or	two	to	broadcast.	To	speed	this	up,	update	your
queue	settings	to	only	wait	one	second	before	looking	for	new	jobs.

Broadcasting	an	Event
To	broadcast	an	event,	you	need	to	mark	that	event	as	a	broadcast	event	by	having	it
implement	the	Illuminate\Contracts\Broadcasting\ShouldBroadcast	interface.	This
interface	requires	you	to	add	the	broadcastOn()	method,	which	will	return	an	array	of	either
strings	or	Channel	objects,	each	representing	a	WebSocket	channel.

THE	STRUCTURE	OF	WEBSOCKET	EVENTS

Every	event	you	send	with	WebSockets	can	have	three	primary	characteristics:	the	name,	the	channel,	and	the	data.

The	name	of	an	event	might	be	something	like	user-was-subscribed,	but	Laravel’s	default	is	to	use	the	fully	qualified
class	name	of	the	event;	i.e.,	so	something	like	App\Events\UserSubscribed.	You	can	customize	this	by	passing	the	name
to	the	optional	broadcastAs()	method	in	your	event	class.

The	channel	is	the	way	of	describing	which	clients	should	receive	this	message.	It’s	a	very	common	pattern	to	have	a
channel	for	each	user	(e.g.,	users.1,	users.2,	etc.),	and	possibly	a	channel	for	all	users	(e.g.,	users),	and	maybe	one	for
just	users	who	are	members	of	a	certain	account	(accounts.1).	If	the	channel	you’re	targeting	is	a	private	channel,	preface
the	channel	name	with	private-,	and	if	it’s	a	presence	channel,	preface	the	channel	name	with	presence-.	So,	a	private
Pusher	channel	named	groups.5	should	be,	instead,	private-groups.5.	If	you	use	Laravel’s	PrivateChannel	and
PresenceChannel	objects	in	your	broadcastOn()	method,	they’ll	take	care	of	adding	those	prefaces	to	your	channel
names	for	you.

The	data	is	a	payload,	usually	JSON,	of	information	relevant	to	the	event	—	the	message,	maybe,	or	information	about
the	user	or	plan	that	can	be	acted	upon	by	the	consuming	JavaScript.

Example	16-16	shows	our	UserSubscribed	event,	modified	to	broadcast	on	two	channels:	one
for	the	user	(to	confirm	the	user ’s	subscription)	and	one	for	admins	(to	notify	them	of	a	new
subscription).

Example	16-16.	An	event	broadcasting	on	multiple	channels
...

use	Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class	UserSubscribed	extends	Event	implements	ShouldBroadcast

{

				use	InteractsWithSockets,	SerializesModels;

				public	$user;

				public	$plan;

				public	function	__construct($user,	$plan)

				{

								$this->user	=	$user;

								$this->plan	=	$plan;

				}

				public	function	broadcastOn()

				{

								//	String	syntax

								return	[

												'users.'	.	$this->user->id,

												'admins'

];

								//	Channel	object	syntax

								return	[

												new	Channel('users.'	.	$this->user->id),

												new	Channel('admins'),

												//	If	it	were	a	private	channel:	new	PrivateChannel('admins'),

												//	If	it	were	a	presence	channel:	new	PresenceChannel('admins'),

];

				}

}

By	default,	any	public	properties	of	your	event	will	be	serialized	as	JSON	and	sent	along	as
the	data	of	your	broadcast	event.	That	means	the	data	of	one	of	our	broadcast	UserSubscribed
events	might	look	like	Example	16-17.

Example	16-17.	Sample	broadcast	event	data
{

				'user':	{

								'id':	5,

								'name':	'Fred	McFeely',

								...

				},

				'plan':	'silver'

}

You	can	override	this	by	returning	an	array	of	data	from	the	broadcastWith()	method	on
your	event,	as	in	Example	16-18.

Example	16-18.	Customizing	the	broadcast	event	data
public	function	broadcastWith()

{

				return	[

								'userId'	=>	$this->user->id,

								'plan'	=>	$this->plan

];

}

Finally,	you	can	customize	which	queue	your	event	is	pushed	onto	with	its	onQueue()	method,
as	in	Example	16-19.	You	may	choose	to	do	this	so	you	can	keep	other	queue	items	from
slowing	down	your	event	broadcast;	real-time	WebSockets	aren’t	much	fun	if	a	long-running
job	that’s	higher	in	the	queue	keeps	the	events	from	going	out	in	time.

Example	16-19.	Specifying	the	queue	a	job	should	run	on
public	function	onQueue()

{

				return	'websockets-for-faster-processing'

}

Receiving	the	Message
If	you	choose	to	host	your	own	Redis	WebSockets	server,	the	Laravel	docs	have	a	great
walkthrough	on	how	to	set	that	up	using	socket.io	and	ioredis.

However,	it’s	much	more	common	to	use	Pusher.	Plans	over	a	certain	size	cost	money,	but
there’s	a	generous	free	plan.	Pusher	makes	it	incredibly	simple	to	set	up	a	simple	WebSocket
server,	and	its	JavaScript	SDK	handles	all	of	the	authentication	and	channel	management	with
almost	no	work	on	your	part.	SDKs	are	available	for	iOS,	Android,	and	many	more
platforms,	languages,	and	frameworks.

http://bit.ly/2f5lmce
https://pusher.com/

TO	ECHO	OR	NOT	TO	ECHO?
The	next	section	covers	how	to	write	a	JavaScript	frontend	to	interact	with	Laravel	over	WebSockets	both	with
and	without	Echo.	It’s	helpful	to	understand	how	to	do	this	without	Echo	even	if	you	choose	to	use	it	in	the	end,
but	because	much	of	the	code	here	is	not	necessary	if	you	use	Echo,	I’d	recommend	reading	the	following
section,	then	the	Echo	section,	“Laravel	Echo	(the	JavaScript	Side)”,	before	you	start	implementing	any	of	it;	you
can	decide	which	way	you	prefer	and	then	write	your	code	from	there.

To	get	started,	pull	in	Pusher ’s	library,	get	an	API	key	from	your	Pusher	account,	and
subscribe	to	any	events	on	any	channels	with	code	like	that	in	Example	16-20.

Example	16-20.	Basic	usage	of	Pusher	JS
...

<script	src="https://js.pusher.com/3.1/pusher.min.js"></script>

<script>

//	Globally,	perhaps;	just	a	sample	of	how	to	get	data	in

var	App	=	{

				'userId':	5,

				'pusherKey':	'your-pusher-api-key-here'

};

//	Locally

var	pusher	=	new	Pusher(App.pusherKey);

var	pusherChannel	=	pusher.subscribe('users.'	+	App.userId);

pusherChannel.bind('App\\Events\\UserSubscribed',	(data)	=>	{

				console.log(data.user,	data.plan);

});

</script>

ESCAPING	BACKSLASHES	IN	JAVASCRIPT
Since	\	is	a	control	character	in	JavaScript,	you	need	to	write	\\	to	represent	a	backslash	in	your	strings,	which	is
why	there	are	two	backslashes	between	each	namespace	segment	in	Example	16-20.

To	publish	to	Pusher	from	Laravel,	get	your	Pusher	key,	secret,	and	app	ID	from	your	Pusher
account	dashboard,	and	then	set	them	in	your	.env	file	under	the	keys	PUSHER_KEY,
PUSHER_SECRET,	and	PUSHER_APP_ID.

If	you	serve	your	app,	visit	a	page	with	the	JavaScript	from	Example	16-20	embedded	in	it	in
one	window,	push	a	broadcast	event	in	another	window	or	from	your	terminal,	have	a	queue
listener	running	or	are	using	the	sync	driver,	and	all	of	your	authentication	information	is	set
up	correctly,	you	should	see	event	logs	popping	up	in	your	JavaScript	window’s	console	in
near	real	time.

With	this	power,	it’s	now	easy	for	you	to	keep	your	users	up-to-date	with	what’s	happening
with	their	data	any	time	they’re	in	your	app.	You	can	notify	users	of	the	actions	of	other	users,
of	long-running	processes	that	have	just	finished,	or	of	your	application’s	responses	to
external	actions	like	incoming	emails	or	webhooks.	The	possibilities	are	endless.

REQUIREMENTS
If	you	want	to	broadcast	with	Pusher	or	Redis,	you’ll	need	to	bring	in	these	dependencies:

Pusher:	pusher/pusher-php-server:~2.0

Redis:	predis/predis:~1.0

Advanced	Broadcasting	Tools
Laravel	has	a	few	more	tools	to	make	it	possible	to	perform	more	complex	interactions	in
event	broadcasting.	These	tools,	a	combination	of	framework	features	and	a	JavaScript
library,	are	called	Laravel	Echo.

These	framework	features	work	best	when	you	use	Laravel	Echo	in	your	JavaScript	frontend
(which	we’ll	cover	in	“Laravel	Echo	(the	JavaScript	Side)”),	but	you	can	still	enjoy	some	of
the	benefits	of	Echo	without	using	the	JavaScript	components.	Echo	will	work	with	both
Pusher	and	Redis,	but	I’m	going	to	use	Pusher	for	any	examples.

Excluding	the	current	user	from	broadcast	events
Every	connection	to	Pusher	is	assigned	a	unique	“socket	ID”	identifying	that	socket
connection.	And	it’s	easy	to	define	that	any	given	socket	(user)	should	be	excluded	from
receiving	a	specified	broadcast	event.

This	feature	makes	it	possible	to	define	that	certain	events	should	not	be	broadcast	to	the	user
who	fired	them.	Let’s	say	every	user	in	a	team	gets	notified	when	other	users	create	a	task;
would	you	want	to	be	notified	of	a	task	you	just	created?	No,	and	that’s	why	we	have	the
toOthers()	method.

To	implement	this,	there	are	two	steps	to	follow.	First,	you	need	to	set	up	your	JavaScript	to
send	a	certain	POST	to	/broadcasting/socket	when	your	WebSocket	connection	is	initialized.
This	attaches	your	socket_id	to	your	Laravel	session.	Echo	does	this	for	you,	but	you	can
also	do	it	manually	—	take	a	look	at	the	Echo	source	to	see	how	it	works.

Next,	you’ll	want	to	update	every	request	that	your	JavaScript	makes	to	have	an	X-Socket-ID
header	that	contains	that	socket_id.	Example	16-21	shows	how	to	do	that	in	Vue	or	jQuery.

Example	16-21.	Sending	the	socket	ID	along	with	each	Ajax	request	in	Vue	or	jQuery
//	Run	this	right	after	you	initialize	echo

//	Vue

Vue.http.interceptors.push((request,	next)	=>	{

				request.headers['X-Socket-Id']	=	Echo.socketId();

				next();

});

//	jQuery

$.ajaxSetup({

				headers:	{

								'X-Socket-Id':	Echo.socketId()

				}

});

Once	you’ve	handled	this,	you	can	exclude	any	event	from	being	broadcast	to	the	user	who
triggered	it	by	using	the	broadcast()	global	helper	instead	of	the	event()	global	helper	and
then	chaining	toOthers()	after	it:

broadcast(new	UserSubscribed($user,	$plan))->toOthers();

https://github.com/laravel/echo/

The	broadcast	service	provider
All	of	the	other	features	that	Echo	provides	require	your	JavaScript	to	authenticate	with	the
server.	Take	a	look	at	App\Providers\BroadcastServiceProvider,	where	you’ll	define	how
to	authorize	users’	access	to	your	private	and	presence	channels.

The	two	primary	actions	you	can	take	are	to	define	the	middleware	that	will	be	used	on	your
broadcasting	auth	routes,	and	to	define	the	authorization	settings	for	your	channels.

If	you’re	going	to	use	these	features,	you’ll	need	to	uncomment	the
App\Providers\BroadcastServiceProvider::class	line	in	config/app.php.

And	if	you’ll	be	using	these	features	without	Laravel	Echo,	you’ll	either	need	to	manually
handle	sending	CSRF	tokens	along	with	your	authentication	requests,	or	exclude
/broadcasting/auth	and	/broadcasting/socket	from	CSRF	protection	by	adding	them	to	the
$except	property	of	the	VerifyCsrfToken	middleware.

Binding	authorization	definitions	for	WebSocket	channels
Private	and	presence	WebSocket	channels	need	to	be	able	to	ping	your	application	to	learn
whether	the	current	user	is	authorized	for	that	channel.	You’ll	use	the	Broadcast::channel()
method	to	define	the	rules	for	this	authorization.

PUBLIC,	PRIVATE,	AND	PRESENCE	CHANNELS
There	are	three	types	of	channels	in	WebSockets:	public,	private,	and	presence.

Public	channels	can	be	subscribed	to	by	any	user,	authenticated	or	not.

Private	channels	require	the	end	user’s	JavaScript	to	authenticate	against	the	application	to	prove	that	the	user	is
both	authenticated	and	authorized	to	join	this	channel.

Presence	channels	are	a	type	of	private	channel,	but	instead	of	allowing	for	message	passing,	they	simply	keep
track	of	which	users	join	and	leave	the	channel,	and	make	this	information	available	to	the	application’s	frontend.

Broadcast::channel()	takes	two	parameters:	first,	a	string	representing	the	channel(s)	you
want	it	to	match,	and	second,	a	closure	that	defines	how	to	authorize	users	for	any	channel
matching	that	string.	The	closure	will	be	passed	an	Eloquent	model	of	the	current	user	as	its
first	parameter,	and	any	matched	*	segments	as	additional	parameters.	For	example,	a	channel
authorization	definition	with	a	string	of	teams.*,	when	matched	against	the	channel	teams.5,
will	pass	its	closure	$user	as	the	first	parameter	and	5	as	the	second	parameter.

If	you’re	defining	the	rules	for	a	private	channel,	your	Broadcast::channel()	closure	will
need	to	return	a	boolean:	is	this	user	authorized	for	this	channel	or	not?	If	you’re	defining	the
rules	for	a	presence	channel,	your	closure	should	return	an	array	of	data	you	want	available
to	the	presence	channel	for	any	users	that	you	want	to	show	up	in	the	channel.	Example	16-22
illustrates	defining	rules	for	both	kinds	of	channel.

Example	16-22.	Defining	authorization	rules	for	private	and	presence	WebSocket	channels
...

class	BroadcastServiceProvider	extends	ServiceProvider

{

				public	function	boot()

				{

								...

								//	Define	how	to	authenticate	a	private	channel

								Broadcast::channel('teams.*',	function	($user,	$teamId)	{

												return	$user->team_id	==	$teamId;

								});

								//	Define	how	to	authenticate	a	presence	channel;	return	any	data

								//	you	want	the	app	to	have	about	the	user	in	the	channel

								Broadcast::channel('rooms.*',	function	($user,	$roomId)	{

												if	($user->rooms->contains($roomId))	{

																return	[

																				'name'	=>	$user->name

];

												}

								});

You	might	be	wondering	how	this	information	gets	from	your	Laravel	application	to	your
JavaScript	frontend.	Pusher ’s	JavaScript	library	sends	a	POST	to	your	application;	by	default	it
will	hit	/pusher/auth,	but	you	can	customize	that	(and	Echo	customizes	it	for	you)	to	hit
Laravel’s	authentication	route,	/broadcasting/auth:

var	pusher	=	new	Pusher(App.pusherKey,	{

				authEndpoint:	'/broadcasting/auth'

});

Example	16-23	shows	how	we	can	tweak	Example	16-20	for	private	and	presence	channels,
without	Echo’s	frontend	components.

Example	16-23.	Basic	usage	of	Pusher	JS	for	private	and	presence	channels
...

<script	src="https://js.pusher.com/3.1/pusher.min.js"></script>

<script>

				//	Globally,	perhaps;	just	a	sample	of	how	to	get	data	in

				var	App	=	{

								'userId':	{{	auth()->user()->id	}},

								'pusherKey':	'your	pusher	key	here'

				};

				//	Locally

				var	pusher	=	new	Pusher(App.pusherKey,	{

								authEndpoint:	'/broadcasting/auth'

				});

				//	Private	channel

				var	privateChannel	=	pusher.subscribe('private-teams.1');

				privateChannel.bind('App\\Events\\UserSubscribed',	(data)	=>	{

								console.log(data.user,	data.plan);

				});

				//	Presence	channel

				var	presenceChannel	=	pusher.subscribe('presence-rooms.5');

				console.log(presenceChannel.members);

</script>

We	now	have	the	ability	to	send	WebSocket	messages	to	users	depending	on	whether	they	pass
a	given	channel’s	authorization	rules.	We	can	also	keep	track	of	which	users	are	active	in	a
particular	group	or	section	of	the	site,	and	display	relevant	information	to	each	user	about
other	users	in	the	same	group.

Laravel	Echo	(the	JavaScript	Side)
Laravel	Echo	is	comprised	of	two	pieces:	the	advanced	framework	features	we	just	covered,
and	a	JavaScript	package	that	takes	advantage	of	those	features	and	drastically	reduces	the
amount	of	boilerplate	code	you	need	to	write	powerful	WebSocket-based	frontends.	The	Echo
JavaScript	package	makes	it	easy	to	handle	authentication,	authorization,	and	subscribing	to
private	and	presence	channels.	Echo	can	be	used	with	the	SDKs	for	either	Pusher	JS	(for
Pusher)	or	socket.io	(for	Redis).

Bringing	Echo	into	your	project
To	use	Echo	in	your	project’s	JavaScript,	add	it	to	package.json	using	npm	install	--save
(be	sure	to	bring	in	the	appropriate	Pusher	or	socket.io	SDK	as	well):

npm	install	pusher-js	--save

npm	install	laravel-echo	--save

Let’s	assume	you	have	a	basic	Gulp	file	running	your	app.js	file	through	Webpack,	like	in
Example	16-24.

Example	16-24.	Compiling	app.js	through	Webpack
const	elixir	=	require('laravel-elixir');

elixir(mix	=>	{

				mix.webpack('app.js');

});

Now,	create	a	basic	resources/assets/js/app.js	file	(Example	16-25)	to	bring	in	your
dependencies	and	initialize	Echo.

Example	16-25.	Initializing	Echo	in	app.js
import	Echo	from	"laravel-echo"

window.Echo	=	new	Echo({

				broadcaster:	'pusher',

				key:	'your-pusher-key'

});

//	Add	your	Echo	bindings	here

For	CSRF	protection,	you’ll	also	need	to	add	a	csrf-token	<meta>	tag	to	your	HTML
template:

<meta	name="csrf-token"	content="{{	csrf_token()	}}">

And,	of	course,	remember	to	link	to	your	compiled	app.js	in	your	HTML	template:

<script	src="/js/app.js"></script>

Now	we’re	ready	to	get	started.

Using	Echo	for	basic	event	broadcasting
This	is	nothing	different	from	what	we’ve	already	used	Pusher	JS	for,	but	Example	16-26	is	a
simple	code	sample	to	show	how	to	use	Echo	to	listen	to	public	channels	for	basic	event
information.

Example	16-26.	Listening	to	a	public	channel	with	Echo
var	currentTeamId	=	5;	//	Likely	set	elsewhere

Echo.channel('teams.'	+	currentTeamId)

				.listen('UserSubscribed',	(data)	=>	{

								console.log(data);

				});

Echo	provides	a	few	methods	for	subscribing	to	various	types	of	channels;	channel()	will
subscribe	you	to	a	public	channel.	Note	that	when	you	listen	to	an	event	with	Echo,	you	can
ignore	the	full	event	namespace	and	just	listen	for	the	unique	name	of	this	event.	And	now	we
now	have	access	to	the	public	data	that’s	passed	along	with	our	event.

We	can	also	chain	listen()	handlers,	as	in	Example	16-27.

Example	16-27.	Chaining	event	listeners	in	Echo
Echo.channel('teams.'	+	currentTeamId)

				.listen('UserSubscribed',	(data)	=>	{

								console.log(data);

				})

				.listen('UserCanceled',	(data)	=>	{

								console.log(data);

				});

REMEMBER	TO	COMPILE	AND	INCLUDE!
Did	you	try	these	code	samples	and	not	see	anything	change	in	your	browser?	Make	sure	to	run	gulp	(if	you’re
running	it	once)	or	gulp	watch	(to	run	a	listener)	to	compile	your	code.	And,	if	you	haven’t	yet,	be	sure	to
actually	include	app.js	in	your	template	somewhere.

Private	channels	and	basic	authentication
Echo	also	has	a	method	for	subscribing	to	private	channels:	private().	It	works	the	same	as
channel(),	but	it	requires	you	to	have	set	up	channel	authorization	definitions	in
BroadcastServiceProvider,	like	we	covered	earlier.	Additionally,	unlike	with	the	SDKs,	you
don’t	need	to	put	private-	in	front	of	your	channel	name.

Example	16-28	shows	what	it	looks	like	to	listen	to	a	private	channel	named	private-teams.5.

Example	16-28.	Listening	to	a	private	channel	with	Echo
var	currentTeamId	=	5;	//	Likely	set	elsewhere

Echo.private('teams.'	+	currentTeamId)

				.listen('UserSubscribed',	(data)	=>	{

								console.log(data);

				});

Presence	channels
Echo	makes	it	much	simpler	to	join	and	listen	to	events	in	presence	channels.	This	time	you’ll
want	to	use	the	join()	method	to	bind	to	this	channel,	as	in	Example	16-29.

Example	16-29.	Joining	a	presence	of	channel
var	currentTeamId	=	5;	//	Likely	set	elsewhere

Echo.join('teams.'	+	currentTeamId)

				.here((members)	=>	{

								console.log(members);

				});

join()	subscribes	to	the	presence	channel,	and	here()	allows	you	to	define	the	behavior
when	the	user	joins	and	also	when	any	other	users	join	or	leave	the	presence	channel.

You	can	think	of	a	presence	channel	like	a	“who’s	online”	sidebar	in	a	chat	room.	When	you
first	join	a	presence	channel,	your	here()	callback	will	be	called	and	provided	a	list	of	all	the
members	at	that	time.	And	any	time	any	members	join	or	leave,	that	callback	will	be	called
again	with	the	updated	list.	There’s	no	messaging	happening	here,	but	you	can	play	sounds,
update	the	on-page	list	of	members,	or	do	whatever	else	you	want	in	response	to	these	actions.

There	are	also	specific	methods	for	individual	events,	which	you	can	use	individually	or
chained	(see	Example	16-30).

Example	16-30.	Listening	for	specific	presence	events
var	currentTeamId	=	5;	//	Likely	set	elsewhere

Echo.join('teams.'	+	currentTeamId)

				.then((members)	=>	{

								//	runs	when	you	join

								console.table(members);

				})

				.joining((joiningMember,	members)	=>	{

								//	runs	when	another	member	joins

								console.table(joiningMember);

				})

				.leaving((leavingMember,	members)	=>	{

								//	runs	when	another	member	leaves

								console.table(leavingMember);

				});

Excluding	the	current	user
We	covered	this	previously	in	the	chapter,	but	if	you	want	to	exclude	the	current	user,	use	the
broadcast()	global	helper	instead	of	the	event()	global	helper	and	then	chain	the	toOthers()
method	after	your	broadcast	call.

As	you	can	see,	the	Echo	JavaScript	library	doesn’t	do	anything	you	couldn’t	do	on	your	own
—	but	it	makes	a	lot	of	common	tasks	much	simpler,	and	provides	a	cleaner,	more	expressive
syntax	for	common	WebSocket	tasks.

Subscribing	to	notifications	with	Echo
Laravel’s	notifications	come	with	a	broadcast	driver	out	of	the	box	that	pushes	notifications
out	as	broadcast	events.	You	can	subscribe	to	these	notifications	with	Echo	using
Echo.notification,	as	in	Example	16-31.

Example	16-31.	Subscribing	to	a	notification	with	Echo
Echo.private('App.User.'	+	userId)

				.notification((notification)	=>	{

								console.log(notification.type);

				});

Scheduler
If	you’ve	ever	written	a	cron	job	before,	you	likely	already	wish	for	a	better	tool.	Not	only	is
the	syntax	onerous	and	frustratingly	difficult	to	remember,	but	it’s	one	significant	aspect	of
your	application	that	can’t	be	stored	in	version	control.

Laravel’s	scheduler	makes	handling	scheduled	tasks	simple.	You’ll	write	your	scheduled	tasks
in	code,	and	then	point	one	cron	job	at	your	app:	once	per	minute,	run	php	artisan
schedule:run.	Every	time	this	Artisan	command	is	run,	Laravel	checks	your	schedule
definitions	to	find	out	if	any	scheduled	tasks	should	run.

Here’s	the	cron	job	to	define	that	command:

*	*	*	*	*	php	/home/myapp.com/artisan	schedule:run	>>	/dev/null	2>&1

There	are	many	task	types	you	can	schedule	and	many	time	frames	you	can	use	to	schedule
them.

app/Console/Kernel.php	has	a	method	named	$schedule,	which	is	where	you’ll	define	any
tasks	you’d	like	to	schedule.

Available	Task	Types
First,	let’s	take	a	look	at	the	simplest	option:	a	closure,	run	every	minute	(Example	16-32).
That	means	that,	every	time	the	cron	job	hits	the	schedule:run	command,	it	will	call	this
closure.

Example	16-32.	Scheduling	a	closure	to	run	once	every	minute
//	app/Consoles/Kernel.php

public	function	schedule($schedule)

{

				$schedule->call(function	()	{

								dispatch(new	CalculateTotals);

				})->everyMinute();

}

There	are	two	other	types	of	tasks	you	can	schedule:	Artisan	and	shell	commands.

You	can	schedule	Artisan	commands	by	passing	their	syntax	exactly	as	you	would	call	them
from	the	command	line:

$schedule->command('scores:tally	--reset-cache')->everyMinute();

And	you	can	run	any	shell	commands	that	you	could	run	with	PHP’s	exec()	method:

$schedule->exec('/home/myapp.com/bin/build.sh')->everyMinute();

Available	Time	Frames
The	beauty	of	the	scheduler	isn’t	just	that	you	can	define	your	tasks	in	code;	it’s	that	you	can
schedule	them	in	code,	too.	Laravel	keeps	track	of	time	passing	and	evaluates	whether	it’s
time	for	any	given	task	to	run.	That’s	easy	with	everyMinute()	because	the	answer	is	always
simple:	run	the	task.	But	Laravel	keeps	the	rest	simple	for	you,	too,	even	for	the	most	complex
of	requests.

Let’s	take	a	look	at	your	options	by	starting	with	a	monstrous	definition	that’s	simple	in
Laravel:

$schedule->call(function	()	{

				//	Runs	once	a	week	on	Sunday	at	23:50

})->weekly()->sundays()->at('23:50');

Notice	that	we	can	chain	times	together:	we	can	define	frequency	and	specify	the	day	of	the
week	and	the	time,	and	of	course	we	can	do	so	much	more.

Table	16-1	shows	a	list	of	potential	date/time	modifiers	for	use	when	scheduling	a	job.

Table	16-1.	Date/time	modifiers	for	use	with	the	scheduler

Command Description

->timezone('America/Detroit') Set	the	time	zone	for	schedules

->cron('*	*	*	*	*	*') Define	the	schedule	using	the	traditional	cron	notation

->everyMinute() Run	every	minute

->everyFiveMinutes() Run	every	5	minutes

->everyTenMinutes() Run	every	10	minutes

->everyThirtyMinutes() Run	every	30	minutes

->hourly() Run	every	hour

->daily() Run	every	day	at	midnight

->dailyAt('14:00') Run	every	day	at	14:00

->twiceDaily(1,	14) Run	every	day	at	1:00	and	14:00

->weekly() Run	every	week	(midnight	on	Sunday)

->weeklyOn(5,	'10:00') Run	every	week	on	Friday	at	10:00

->monthly() Run	every	month	(midnight	on	the	1st)

->monthlyOn(15,	'23:00') Run	every	month	on	the	15th	at	23:00

->quarterly() Run	every	quarter	(midnight	on	the	1st	of	January,	April,	July,	and	October)

->yearly() Run	every	year	(midnight	on	the	1st	of	January)

->when(closure) Limit	the	task	to	when	closure	returns	true

->skip(closure) Limit	the	task	to	when	closure	returns	false

->between('8:00',	'12:00') Limit	the	task	to	between	the	given	times

->unlessBetween('8:00',	'12:00') Limit	the	task	to	any	time	except	between	the	given	times

->weekdays() Limit	to	weekdays

->sundays() Limit	to	Sundays

->mondays() Limit	to	Mondays

->tuesdays() Limit	to	Tuesdays

->wednesdays() Limit	to	Wednesdays

->thursdays() Limit	to	Thursdays

->fridays() Limit	to	Fridays

->saturdays() Limit	to	Saturdays

Most	of	these	can	be	chained	one	after	another,	but	of	course,	any	combinations	that	don’t
make	sense	chained	can’t	be	chained.

Example	16-33	shows	a	few	combinations	you	could	consider.

Example	16-33.	Some	sample	scheduled	events
//	Both	run	weekly	on	Sunday	at	23:50

$schedule->command('do:thing')->weeklyOn(0,	'23:50');

$schedule->command('do:thing')->weekly()->sundays()->at('23:50');

//	Run	once	per	hour,	weekdays,	8am-5pm

$schedule->command('do:thing')->weekdays()->hourly()->when(function	()	{

				return	date('H')	>=	8	&&	date('H')	<=	17;

});

//	Run	once	per	hour,	weekdays,	8am-5pm	using	new	Laravel	5.3	"between"

$schedule->command('do:thing')->weekdays()->hourly()->between('8:00',	'17:00');

$schedule->command('do:thing')->everyThirtyMinutes()->skip(function	()	{

				return	app('SkipDetector')->shouldSkip();

});

Blocking	and	Overlap
If	you	want	to	avoid	your	tasks	overlapping	each	other	—	for	example,	if	you	have	a	task
running	every	minute	that	may	sometimes	take	longer	than	a	minute	to	run	—	end	the
schedule	chain	with	the	withoutOverlapping()	method.	This	method	skips	a	task	if	the
previous	instance	of	that	task	is	still	running:

$schedule->command('do:thing')->everyMinute()->withoutOverlapping();

Handling	Task	Output
Sometimes	the	output	from	your	scheduled	task	is	important,	whether	for	logging,
notifications,	or	just	ensuring	that	the	task	ran.

If	you	want	to	write	the	returned	output	of	a	task	to	a	file,	use	sendOutputTo():

$schedule->command('do:thing')->daily()->sendOutputTo($filePath);

If	you	want	to	append	it	to	a	file	instead,	use	appendOutputTo():

$schedule->command('do:thing')->daily()->appendOutputTo($filePath);

And	if	you	want	to	email	the	output	to	a	designated	recipient,	write	it	to	a	file	first	and	then
add	emailOutputTo():

$schedule->command('do:thing')

				->daily()

				->sendOutputTo($filePath)

				->emailOutputTo('me@myapp.com');

Make	sure	that	your	email	settings	are	configured	correctly	in	Laravel’s	basic	email
configuration.

CLOSURE	SCHEDULED	EVENTS	CAN’T	SEND	OUTPUT
The	sendOutputTo(),	appendOutputTo(),	and	emailOutputTo()	methods	only	work	for	command	scheduled	tasks.
You	can’t	use	them	for	closures,	unfortunately.

You	may	also	want	to	send	some	output	to	ensure	that	your	tasks	ran	correctly.	There	are	a
few	services	that	provide	this	sort	of	uptime	monitoring,	most	significantly	Laravel	Envoyer
(a	zero-downtime	deployment	service	that	also	provides	cron	uptime	monitoring)	and	Dead
Man’s	Snitch,	a	tool	designed	purely	for	monitoring	cron	job	uptime.

These	services	don’t	expect	something	to	be	emailed	to	them,	but	rather	expect	an	HTTP
“ping,”	so	Laravel	makes	that	easy	with	pingBefore()	and	thenPing():

$schedule->command('do:thing')

				->daily()

				->pingBefore($beforeUrl)

				->thenPing($afterUrl);

If	you	want	to	use	the	ping	features,	you’ll	need	to	pull	in	Guzzle	using	Composer:
"guzzlehttp/guzzle":"~5.3|~6.0".

https://envoyer.io
https://deadmanssnitch.com/

Task	Hooks
Speaking	of	running	something	before	and	after	your	task,	there	are	hooks	for	that,	with
before()	and	after():

$schedule->command('do_thing')

				->daily()

				->before(function	()	{

								//	Prepare

				})

				->after(function	()	{

								//	Cleanup

				});

Testing
Testing	queued	jobs	(or	anything	else	in	the	queue)	is	easy.	In	phpunit.xml,	which	is	the
configuration	file	for	your	tests,	the	QUEUE_DRIVER	environment	variable	is	set	to	sync	by
default.	That	means	your	tests	will	run	your	jobs	or	other	queued	tasks	synchronously,
directly	in	your	code,	without	relying	on	a	queue	system	of	any	sort.	You	can	test	them	just
like	any	other	code.

However,	if	you’d	just	like	to	check	that	a	job	was	fired,	you	can	do	that	with	the
expectsJobs()	method,	as	in	Example	16-34.

Example	16-34.	Asserting	that	a	job	of	the	specified	class	was	dispatched
public	function	test_changing_number_of_subscriptions_crunches_reports()

{

				$this->expectsJobs(App\Jobs\CrunchReports::class);

				...

}

Or,	in	Laravel	5.3	and	later,	you	can	assert	against	the	specific	job	itself,	as	in	Example	16-35.

Example	16-35.	Using	a	closure	to	verify	that	a	dispatched	job	meets	given	criteria
use	Illuminate\

public	function	test_changing_subscriptions_triggers_crunch_job()

{

				...

				Bus::assertDispatched(CrunchReports::class,	function	($e)	{

								return	$e->subscriptions->contains(5);

				});

				//	Also	can	use	assertNotDispatched

}

To	test	that	an	event	fired,	you	have	three	options.	First,	you	can	just	test	that	the	behavior	you
expected	happened,	without	concerning	yourself	with	the	event	itself.

Second,	you	can	explicitly	assert	that	the	event	fired,	as	in	Example	16-36.	This	works	in
Laravel	5.2.

Example	16-36.	Asserting	that	an	event	of	the	specified	class	was	fired
public	function	test_usersubscribed_event_fires()

{

				$this->expectsEvents(App\Events\UserSubscribed::class);

				...

}

Finally,	you	can	run	a	test	against	the	event	that	was	fired,	as	in	Example	16-37.	This	is	new	in
Laravel	5.3.

Example	16-37.	Using	a	closure	to	verify	that	a	fired	event	meets	given	criteria
public	function	test_usersubscribed_event_fires()

{

				...

				Event::assertFired(UserSubscribed::class,	function	($e)	{

								return	$e->user->email	=	'user-who-subscribed@mail.com';

				});

				//	Also	can	use	assertNotFired()

}

Another	common	scenario	is	that	you’re	testing	code	that	incidentally	fires	events,	and	you
want	to	disable	the	event	listeners	during	that	test.	You	can	disable	the	event	system	with	the
withoutEvents()	method,	as	in	Example	16-38.

Example	16-38.	Disabling	event	listeners	during	a	test
public	function	test_something_subscription_related()

{

				$this->withoutEvents();

				...

}

TL;DR
Queues	allow	you	to	separate	chunks	of	your	application’s	code	from	the	synchronous	flow
of	user	interactions	out	to	a	list	of	commands	to	be	processed	by	a	“queue	worker.”	This
allows	your	users	to	resume	interactions	with	your	application	while	slower	processes	are
handled	asychronously	in	the	background.

Jobs	are	classes	that	are	structured	with	the	intention	of	encapsulating	a	chunk	of	application
behavior	so	that	it	can	be	pushed	onto	a	queue.

Laravel’s	event	system	follows	the	pub/sub	or	observer	pattern,	allowing	you	to	send	out
notifications	of	an	event	from	one	part	of	your	application,	and	elsewhere	bind	listeners	to
those	notifications	to	define	what	behavior	should	happen	in	response	to	them.	Using
WebSockets,	events	can	also	be	broadcast	to	frontend	clients.

Laravel’s	scheduler	simplifies	scheduling	tasks.	Point	an	every-minute	cron	job	to	php
artisan	schedule:run	and	then	schedule	your	tasks	with	even	the	most	complex	of	time
requirements	using	the	scheduler,	and	Laravel	will	handle	all	the	timings	for	you.

Chapter	17.	Helpers	and	Collections

We’ve	already	covered	many	global	functions	throughout	the	book:	little	helpers	that	make	it
easier	to	perform	common	tasks,	like	dispatch()	for	Jobs,	event()	for	Events,	app()	for
dependency	resolution,	and	many	more.	We	also	talked	a	bit	about	Laravel’s	collections,	or
arrays	on	steroids,	in	Chapter	8.

In	this	chapter	we’ll	cover	some	of	the	more	common	and	powerful	helpers	and	some	of	the
basics	of	programming	with	collections.

Helpers
You	can	find	a	full	list	of	the	helpers	Laravel	offers	in	the	helpers	docs,	but	we’re	going	to
cover	a	few	of	the	most	useful	functions	here.

https://laravel.com/docs/helpers

Arrays
PHP’s	native	array	manipulation	functions	give	you	a	lot	of	power,	but	sometimes	there	are
common	manipulations	we	want	to	make	that	require	unwieldy	loops	and	logic	checks.
Laravel’s	array	helpers	make	a	few	common	array	manipulations	much	simpler:

array_first($array,	$closure,	$default	=	null)

Returns	the	first	array	value	that	passes	a	test,	defined	in	a	closure.	You	can	optionally	set
the	default	value	as	the	third	parameter:

$people	=	[

				[

								'email'	=>	'm@me.com',

								'name'	=>	'Malcolm	Me'

],

				[

								'email'	=>	'j@jo.com',

								'name'	=>	'James	Jo'

]

];

$value	=	array_first($people,	function	($key,	$person)	{

				return	$person['email']	==	'j@jo.com';

});

array_get($array,	$key,	$default	=	null)

Makes	it	easy	to	get	values	out	of	an	array,	with	two	added	benefits:	it	won’t	throw	an
error	if	you	ask	for	a	key	that	doesn’t	exist	(and	you	can	provide	defaults	with	the	third
parameter),	and	you	can	use	dot	notation	to	traverse	nested	arrays.	For	example:

$array	=	['owner'	=>	['address'	=>	['line1'	=>	'123	Main	St.']]];

$line1	=	array_get($array,	'owner.address.line1',	'No	address');

$line2	=	array_get($array,	'owner.address.line2');

array_has($array,	$key)

Makes	it	easy	to	check	whether	an	array	has	a	particular	value	set	using	dot	notation	for
traversing	nested	arrays:

$array	=	['owner'	=>	['address'	=>	['line1'	=>	'123	Main	St.']]];

if	(array_has($array,	'owner.address.line2'))	{

				//	Do	stuff

}

array_pluck($array,	$key,	$indexKey)

Returns	an	array	of	the	values	corresponding	to	the	provided	key:

$array	=	[

				['owner'	=>	['id'	=>	4,	'name'	=>	'Tricia']],

				['owner'	=>	['id'	=>	7,	'name'	=>	'Kimberly']],

];

$array	=	array_pluck($array,	'owner.name');

//	Returns	['Tricia',	'Kimberly'];

If	you	want	the	returned	array	to	be	keyed	by	another	value	from	the	source	array,	you
can	pass	that	value’s	dot-notated	reference	as	the	third	parameter:

$array	=	array_pluck($array,	'owner.name',	'owner.id');

//	Returns	[4	=>	'Tricia',	7	=>	'Kimberly'];

Strings
Just	like	with	arrays,	there	are	some	string	manipulations	and	checks	that	are	possible	with
native	PHP	functions,	but	can	be	cumbersome.	Laravel’s	helpers	make	a	few	common	string
operations	faster	and	simpler:

e($string)

An	alias	to	htmlentities();	prepares	a	(often	user-provided)	string	for	safe	echoing	on
an	HTML	page.	For	example:

e('<script>do	something	nefarious</script>');

//	Returns	<script>do	something	nefarious</script>

starts_with($haystack,	$needle),	ends_with($haystack,	$needle),	and
str_contains($haystack,	$needle)

Return	a	boolean	of	whether	the	provided	“haystack”	string	starts	with,	ends	with,	or
contains	the	provided	“needle”	string:

if	(starts_with($url,	'https'))	{

				//	Do	something

}

if	(ends_with($abstract,	'...'))	{

				//	Do	something

}

if	(str_contains($description,	'1337	h4x0r'))	{

				//	Run	away

}

str_limit($string,	$numCharacters,	$concatenationString	=	'...')

Limits	a	string	to	the	provided	number	of	characters.	If	the	string	is	less	than	the	limit,
just	returns	the	string;	if	it’s	greater,	trims	to	the	number	of	characters	provided	and	then
appends	either	...	or	the	provided	concatenation	string.	For	example:

$abstract	=	str_limit($loremIpsum,	30);

//	Returns	"Lorem	ipsum	dolor	sit	amet,	co..."

$abstract	=	str_limit($loremIpsum,	30,	"…");

//	Returns	"Lorem	ipsum	dolor	sit	amet,	co…"

str_is($pattern,	$string)

Returns	a	boolean	of	whether	or	not	a	given	string	matches	a	given	pattern.	The	pattern
can	be	a	regex	pattern,	or	you	can	use	asterisks	to	indicate	wildcard	positions:

str_is('*.dev',	'myapp.dev');							//	true

str_is('*.dev',	'myapp.dev.co.uk');	//	false

str_is('*dev*',	'myapp.dev');							//	true

str_is('*myapp*',	'www.myapp.dev');	//	true

str_is('my*app',	'myfantasticapp');	//	true

str_is('my*app',	'myapp');										//	true

HOW	TO	PASS	A	REGEX	TO	STR_IS()
If	you’re	curious	about	what	regex	patterns	are	acceptable	to	pass	to	str_is(),	check	out	the	function	definition
here	(shortened	for	space)	to	see	how	it	works.	Note	that	it’s	an	alias	of	Illuminate\Support\Str::is:

public	function	is($pattern,	$value)

{

				if	($pattern	==	$value)	return	true;

				$pattern	=	preg_quote($pattern,	'#');

				$pattern	=	str_replace('*',	'.*',	$pattern);

				return	(bool)	preg_match(

								'#^'	.	$pattern	.	'\z#u',

								$value

);

}

str_random($length)

Returns	a	random	string	of	alphanumeric	mixed-case	characters	of	the	length	specified:

$hash	=	str_random(64);

//	Sample:	J40uNWAvY60wE4BPEWxu7BZFQEmxEHmGiLmQncj0ThMGJK7O5Kfgptyb9ulwspmh

str_slug($string,	$separator	=	'-')

Returns	a	URL-friendly	slug	from	a	string	—	often	used	for	creating	a	URL	segment	for
a	name	or	title:

str_slug('How	to	Win	Friends	and	Influence	People');

//	Returns	'how-to-win-friends-and-influence-people'

Application	Paths
When	you’re	dealing	with	the	filesystem,	it	can	often	be	tedious	to	make	links	to	certain
directories	for	getting	and	saving	files.	These	helpers	give	you	quick	access	to	find	the	fully
qualified	paths	to	some	of	the	most	important	directories	in	your	app.

Note	that	each	of	these	can	be	called	with	no	parameters,	but	if	a	parameter	is	passed,	it	will	be
appended	to	the	normal	directory	string	and	returned	as	a	whole:

app_path($append	=	'')

Returns	the	path	for	the	app	directory:

app_path();

//	Returns	/home/forge/myapp.com/app

base_path($append	=	'')

Returns	the	path	for	the	root	directory	of	your	app:

base_path();

//	Returns	/home/forge/myapp.com

config_path($append	=	'')

Returns	the	path	for	configuration	files	in	your	app:

config_path();

//	Returns	/home/forge/myapp.com/config

database_path($append	=	'')

Returns	the	path	for	database	files	in	your	app:

database_path();

//	Returns	/home/forge/myapp.com/database

storage_path($append	=	'')

Returns	the	path	for	the	storage	directory	in	your	app:

storage_path();

//	Returns	/home/forge/myapp.com/storage

URLs
Some	frontend	file	paths	are	consistent	but	at	times	annoying	to	type	—	for	example,	paths	to
assets	—	and	it’s	helpful	to	have	convenient	shortcuts	to	them,	which	we’ll	cover	here.	But
some	can	actually	vary	as	route	definitions	move	or	new	files	are	versioned	with	Elixir,	so
some	of	these	helpers	are	vital	in	making	sure	all	of	your	links	and	assets	work	correctly:

action('Controller@method’,	$params	=	[],	$absolute	=	true)

Assuming	a	controller	method	has	a	single	URL	mapped	to	it,	returns	the	correct	URL
given	a	controller	and	method	name	pair	(separated	by	@):

See	all	People

//	Returns	See	all	People

If	the	controller	method	requires	parameters,	you	can	pass	them	in	as	the	second
parameter	(as	an	array,	if	there’s	more	than	one	required	parameter).	You	can	key	them	if
you	want	for	clarity,	but	what	matters	is	just	that	they’re	in	the	right	order:

	3]	}}">See	Person	#3

//	or

See	Person	#3

//	Returns	See	Person	#3

If	you	pass	false	to	the	third	parameter,	your	links	will	generate	as	relative	(/people/3)
instead	of	absolute	(http://myapp.com/people/3).

route($routeName,	$params	=	[],	$absolute	=	true)

If	a	route	has	a	name	(using	as	in	the	route	definition),	returns	the	URL	for	that	route:

See	all	People

//	Returns	See	all	People

If	the	route	definition	requires	parameters,	you	can	pass	them	in	as	the	second	parameter
(as	an	array	if	more	than	one	parameter	is	required).	Again,	you	can	key	them	if	you
want	for	clarity,	but	what	matters	is	just	that	they’re	in	the	right	order:

	3])	}}">See	Person	#3

//	or

See	Person	#3

//	Returns	See	Person	#3

If	you	pass	false	to	the	third	parameter,	your	links	will	generate	as	relative	instead	of
absolute.

url($string)	and	secure_url($string)
Given	any	path	string,	converts	to	a	fully	qualified	URL.	secure_url()	is	the	same	as
url()	but	forces	HTTPS.

url('people/3');

//	Returns	http://myapp.com/people/3

If	no	parameters	are	passed,	this	instead	gives	an	instance	of
Illuminate\Routing\UrlGenerator,	which	makes	method	chaining	possible:

url()->current();

//	Returns	http://myapp.com/abc

url()->full();

//	Returns	http://myapp.com/abc?order=reverse

url()->previous();

//	Returns	http://myapp.com/login

//	And	many	more	methods	available	on	the	UrlGenerator...

elixir($filePath)

If	assets	are	versioned	with	Elixir ’s	versioning	system,	given	the	nonversioned	path
name,	returns	the	fully	qualified	URL	for	the	versioned	file:

<link	rel="stylesheet"	href="{{	elixir('css/app.css')	}}">

//	Returns	something	like	/build/css/app-eb555e38.css

Misc
There	are	a	few	other	global	helpers	that	I’d	recommend	getting	familiar	with.	Of	course,	you
should	check	out	the	whole	list,	but	the	ones	mentioned	here	are	definitely	worth	taking	a	look
at:

abort($code,	$message,	$headers),	abort_unless($boolean,	$code,	$message,
$headers),	and	abort_if($boolean,	$code,	$message,	$headers)

Throw	HTTP	exceptions.	abort()	throws	the	exception	defined,	abort_unless()	throws
it	if	the	first	parameter	is	false,	and	abort_if()	throws	it	if	the	first	parameter	is	true:

public	function	controllerMethod(Request	$request)

{

				abort(403,	'You	shall	not	pass');

				abort_unless($request->has('magicToken'),	403);

				abort_if($request->user()->isBanned,	403);

}

auth()

Returns	an	instance	of	the	Laravel	authenticator.	Like	the	Auth	facade,	you	can	use	this	to
get	the	current	user,	to	check	for	login	state,	and	more:

$user	=	auth()->user();

if	(auth()->check())	{

				//	Do	something

}

back()

Generates	a	“redirect	back”	response,	sending	the	user	to	the	previous	location:

Route::get('post',	function	()	{

				...

				if	($condition)	{

								return	back();

				}

});

collect($array)

Takes	an	array	and	returns	the	same	data,	converted	to	a	collection:

$collection	=	collect(['Rachel',	'Hototo']);

We’ll	cover	collections	in	just	a	bit.

config($key)

Returns	the	value	for	any	dot-notated	configuration	item:

https://laravel.com/docs/helpers

$defaultDbConnection	=	config('database.default');

csrf_field()	and	csrf_token()
Return	a	full	HTML	hidden	input	(csrf_field())	or	just	the	appropriate	token	value
(csrf_token())	for	adding	CSRF	verification	to	your	form	submission:

<form>

				{{	csrf_field()	}}

</form>

//	or

<form>

				<input	type="hidden"	name="_token"	value="{{	csrf_token()	}}">

</form>

dd($variable...)

Short	for	“dump	and	die,”	runs	var_dump()	on	all	provided	parameters	and	then	exit()
to	quit	the	application	(this	is	used	for	debugging):

...

dd($var1,	$var2,	$state);	//	Why	is	this	not	working???

env($key,	$default	=	null)

Returns	the	environment	variable	for	the	given	key:

$key	=	env('API_KEY',	'');

USING	ENV()	OUTSIDE	OF	CONFIG	FILES
Certain	features	in	Laravel,	including	some	caching	and	optimization	features,	aren’t	available	if	you	use	env()
calls	anywhere	outside	of	config	files.

The	best	way	to	pull	in	environment	variables	is	to	set	up	config	items	for	anything	you	want	to	be	environment-
specific.	Have	those	config	items	read	the	environment	variables,	and	then	reference	the	config	variables
anywhere	within	your	app:

//	config/services.php

return	[

				'bugsnag'	=>	[

								'key'	=>	env('BUGSNAG_API_KEY')

]

];

//	in	controller,	or	whatever

$bugsnag	=	new	Bugsnag(config('services.bugsnag.key'));

dispatch($job)

Dispatches	a	job:

dispatch(new	EmailAdminAboutNewUser($user));

event($event)

Fires	an	event:

event(new	ContactAdded($contact));

factory($entityClass)

Returns	an	instance	of	the	factory	builder	for	the	given	class:

$contact	=	factory(App\Contact::class)->make();

old($key,	$default	=	null)

Returns	the	old	value	(from	the	last	user	form	submission)	for	this	form	key,	if	it	exists:

<input	name="name"	value="{{	old('value',	'Your	name	here')	}}"

redirect($path)

Returns	a	redirect	response	to	the	given	path:

Route::get('post',	function	()	{

				...

				return	redirect('home');

});

Without	parameters,	generates	an	instance	of	the	Illuminate\Routing\Redirector	class.

response($body,	$status,	$headers)

If	passed	with	parameters,	returns	a	prebuilt	instance	of	Response.	If	passed	with	no
response,	returns	an	instance	of	the	Response	factory:

return	response('OK',	200,	['X-Header-Greatness'	=>	'Super	great']);

return	response()->json(['status'	=>	'success'],	200);

view($viewPath)

Returns	a	view	instance:

Route::get('home',	function	()	{

				return	view('home');	//	Gets	/resources/views/home.blade.php

});

Collections
Collections	are	one	of	the	most	powerful	and	yet	underappreciated	tools	Laravel	provides.	We
covered	them	a	bit	in	“Eloquent	Collections”,	but	here’s	a	quick	recap.

Collections	are	essentially	arrays	with	superpowers.	The	array-traversing	methods	you
normally	have	to	pass	arrays	into	(array_walk(),	array_map(),	array_reduce(),	etc.),	all	of
which	have	confusingly	inconsistent	method	signatures,	are	available	as	consistent,	clean,
chainable	methods	on	every	collection.	You	can	get	a	taste	of	functional	programming	and
map,	reduce,	and	filter	your	way	to	cleaner	code.

We’ll	cover	some	of	the	basics	of	Laravel’s	collections	and	collection	pipeline	programming
here,	but	for	a	much	deeper	overview,	check	out	Adam	Wathan’s	book	Refactoring	to
Collections	(Gumroad).

The	Basics	of	Collections
Collections	are	not	a	new	idea	within	Laravel.	Many	languages	make	collection-style
programming	available	on	arrays	out	of	the	box,	but	with	PHP	we’re	not	quite	so	lucky.

Using	PHP’s	array*()	functions,	we	can	take	the	monstrosity	shown	in	Example	17-1,	and
turn	it	into	the	slightly	less	monstrous	monstrosity	shown	in	Example	17-2.

Example	17-1.	A	common,	but	ugly,	foreach	loop
$users	=	[...];

$admins	=	[];

foreach	($users	as	$user)	{

				if	($user['status']	==	'admin')	{

								$user['name']	=	$user['first']	.	'	'	.	$user['last'];

								$admins[]	=	$user;

				}

}

return	$admins;

Example	17-2.	Refactoring	the	foreach	loop	with	native	PHP	functions
$users	=	[...];

return	array_map(function	($user)	{

				$user['name']	=	$user['first']	.	'	'	.	$user['last'];

				return	$user;

},	array_filter($users,	function	($user)	{

				return	$user['status']	==	'admin';

}));

Here,	we’ve	gotten	rid	of	a	temporary	variable	(+$admins+)	and	converted	one	confusing
foreach	loop	into	two	distinct	actions:	map	and	filter.

The	problem	is,	PHP’s	array	manipulation	functions	are	awful	and	confusing.	Just	look	at	this
example;	array_map()	takes	the	closure	first	and	the	array	second,	but	array_filter()	takes
the	array	first	and	the	closure	second.	In	addition,	if	we	added	any	complexity	to	this,	we’d
have	functions	wrapping	functions	wrapping	functions.	It’s	a	mess.

Laravel’s	collections	take	the	power	of	PHP’s	array	manipulation	methods	and	give	them	a
clean,	fluent	syntax	—	and	they	add	many	methods	that	don’t	even	exist	in	PHP’s	array
manipulation	toolbox.	Now,	using	the	collect()	helper	method	that	turns	an	array	into	a
Laravel	collection,	we	can	do	what’s	shown	in	Example	17-3:

Example	17-3.	Refactoring	the	foreach	loop	with	Laravel’s	collections
$users	=	collect([...]);

return	$users->filter(function	($user)	{

				return	$user['status']	==	'admin';

})->map(function	($user)	{

				$user['name']	=	$user['first']	.	'	'	.	$user['last'];

				return	$user;

});

This	isn’t	the	most	extreme	of	examples.	There	are	plenty	where	the	reduction	in	lines	of	code
and	the	increased	simplicity	would	make	an	even	stronger	case.	But	this	right	here	is	so

common.

Look	at	the	original	example	and	how	muddy	it	is.	It’s	not	entirely	clear	until	you	understand
the	entire	code	sample	what	any	given	piece	is	there	for.

The	biggest	benefit	collections	provide,	over	anything	else,	is	breaking	the	actions	you’re
taking	to	manipulate	an	array	into	simple,	discrete,	understandable	tasks.	You	can	now	do
something	like	this:

$users	=	[...]

$countAdmins	=	collect($users)->filter(function	($user)	{

				return	$user['status']	==	'admin'

})->count();

Or	something	like	this:

$users	=	[...];

$greenTeamPoints	=	collect($users)->filter(function	($user)	{

				return	$user->team	==	'green';

})->sum('points');

A	Few	Methods
There’s	much	more	you	can	do	than	what	we’ve	covered	here.	Take	a	look	at	the	Laravel
Collection	docs	to	learn	more	about	all	the	methods	you	can	use,	but	to	get	you	started,	here
are	just	a	few	of	the	core	methods:

all()	and	toArray()
If	you’d	like	to	convert	your	collection	to	an	array,	you	can	do	so	with	either	all()	or
toArray().	toArray()	flattens	not	just	the	collection,	but	also	any	Eloquent	objects
underneath	it,	to	arrays.	all()	only	converts	the	collection	to	an	array;	any	Eloquent
objects	contained	within	the	collection	will	be	preserved	as	Eloquent	objects.	Here	are	a
few	examples:

$users	=	User::all();

$users->toArray();

/*	Returns

				[

								['id'	=>	'1',	'name'	=>	'Agouhanna'],

								...

]

*/

$users->all();

/*	Returns

				[

								Eloquent	Object	{	id	:	1,	name:	'Agouhanna'	},

								...

]

*/

filter()	and	reject()
When	you	want	to	get	a	subset	of	your	original	collection	by	checking	each	item	against
a	closure,	you’ll	use	filter()	(which	keeps	an	item	if	the	closure	returns	true)	or
reject()	(which	keeps	an	item	if	the	closure	returns	false):

$users	=	collect([...]);

$admins	=	$users->filter(function	($user)	{

				return	$user->isAdmin;

});

$paidUsers	=	$user->reject(function	($user)	{

				return	$user->isTrial;

});

where()

where()	makes	it	easy	to	provide	a	subset	of	your	original	collection	where	a	given	key
is	equal	to	a	given	value.	Anything	you	can	do	with	where()	you	can	also	do	with
filter(),	but	it’s	a	shortcut	for	a	common	scenario:

$users	=	collect([...]);

https://laravel.com/docs/collections

$admins	=	$users->where('role',	'admin');

first()	and	last()
If	you	want	just	a	single	item	from	your	collection,	you	can	use	first()	to	pull	from	the
beginning	of	the	list	or	last()	to	pull	from	the	end.

If	you	call	first()	or	last()	with	no	parameters,	they’ll	just	give	you	the	first	or	last	item	in
the	collection.	But	if	you	pass	either	a	closure,	they’ll	instead	give	you	the	first	or	last	item	in
the	collection	that	returns	true	when	passed	to	that	closure.

Sometimes	you’ll	do	this	because	you	want	the	actual	first	or	last	item.	But	sometimes	it’s	the
easiest	way	to	get	one	item	even	if	you	only	expect	there	to	be	one:

$users	=	collect([...]);

$owner	=	$users->first(function	($user)	{

				return	$user->isOwner;

});

$firstUser	=	$users->first();

$lastUser	=	$users->last();

You	can	also	pass	a	second	parameter	to	each	method,	which	is	the	default	value	and	will	be
provided	as	a	fallback	if	the	closure	doesn’t	provide	any	results.

each()

If	you’d	like	to	do	something	with	each	item	of	a	collection,	but	it	doesn’t	include
modifying	the	items	or	the	collection	itself,	you	can	use	each():

$users	=	collect([...]);

$users->each(function	($user)	{

				dispatch(new	EmailUserAThing($user));

});

map()

If	you’d	like	to	iterate	over	all	the	items	in	a	collection,	make	changes	to	them,	and
return	a	new	collection	with	all	of	your	changes,	you’ll	want	to	use	map():

$users	=	collect([...]);

$users	=	$users->map(function	($user)	{

				return	[

								'name'	=>	$user['first']	.	'	'	.	$user['last'],

								'email'	=>	$user['email']

];

});

reduce()

If	you’d	like	to	get	a	single	result	from	your	collection,	like	a	count	or	a	string,	you’ll
probably	want	to	use	reduce().	You	can	define	an	initial	value	for	the	“carry,”	and	a
closure	that	accepts	the	current	state	of	the	“carry”	and	then	each	item	as	parameters:

$users	=	collect([...]);

$points	=	$users->reduce(function	($carry,	$user)	{

				return	$carry	+	$user['points']

},	0);	//	Start	with	a	carry	of	0

pluck()

If	you	want	to	pull	out	just	the	values	for	a	given	key	under	each	item	in	a	collection,	you
can	use	pluck()	(formerly	lists()):

$users	=	collect([...]);

$emails	=	$users->pluck('email')->toArray();

chunk()	and	take()
chunk()	makes	it	easy	to	split	your	collection	into	groups	of	a	predefined	size,	and
take()	pulls	just	the	provided	number	of	items:

$users	=	collect([...]);

$rowsOfUsers	=	$users->chunk(3);	//	Separates	into	groups	of	3

$topThree	=	$users->take(3);	//	Pulls	the	first	3

groupBy()

If	you	want	to	group	all	of	the	items	in	your	collection	by	the	value	of	one	of	their
properties,	you	can	use	groupBy():

$users	=	collect([...]);

$usersByRole	=	$users->groupBy('role');

/*	Returns:

				[

								'member'	=>	[...],

								'admin'	=>	[...]

]

*/

You	can	also	pass	a	closure,	and	whatever	you	return	from	the	closure	will	be	what’s
used	to	group	the	records:

$heroes	=	collect([...]);

$heroesByAbilityType	=	$heroes->groupBy(function	($hero)	{

				if	($hero->canFly()	&&	$hero->isInvulnerable())	{

								return	'Kryptonian';

				}

				if	($hero->bitByARadioactiveSpider())	{

								return	'Spidermanesque';

				}

				if	($hero->color	===	'green'	&&	$hero->likesSmashing())	{

								return	'Hulk-like';

				}

				return	'Generic';

});

reverse()	and	shuffle()
reverse()	reverses	the	order	of	the	items	in	your	collection,	and	shuffle()	randomizes
them:

$numbers	=	collect([1,	2,	3]);

$numbers->reverse()->toArray();	//	[3,	2,	1]

$numbers->shuffle()->toArray();	//	[2,	3,	1]

sort(),	sortBy(),	and	sortByDesc()
If	your	items	are	simple	strings	or	integers,	you	can	use	sort()	to	sort	them:

$sortedNumbers	=	collect([1,	7,	6,	4])->sort()->toArray();	//	[1,	4,	6,	7]

If	they’re	more	complex,	you	can	pass	a	string	(representing	the	property)	or	a	closure
to	sortBy()	or	sortByDesc()	to	define	your	sorting	behavior:

$users	=	collect([...]);

//	Sort	an	array	of	users	by	their	'email'	property

$users->sort('email');

//	Sort	an	array	of	users	by	their	'email'	property

$users->sort(function	($user,	$key)	{

				return	$user['email'];

});

count()	and	isEmpty()
You	can	see	how	many	items	there	are	in	your	collection	using	count()	or	isEmpty():

$numbers	=	collect([1,	2,	3]);

$numbers->count();			//	3

$numbers->isEmpty();	//	false

avg()	and	sum()
If	you’re	working	with	a	collection	of	numbers,	avg()	and	sum()	do	what	their	method
names	say,	and	don’t	require	any	parameters:

collect([1,	2,	3])->sum();	//	6

collect([1,	2,	3])->avg();	//	2

But	if	you’re	working	with	arrays,	you	can	pass	the	key	of	the	property	you’d	like	to	pull
from	each	array	to	operate	on:

$users	=	collect([...]);

$sumPoints	=	$users->sum('points');

$avgPoints	=	$users->avg('points');

USING	COLLECTIONS	OUTSIDE	OF	LARAVEL
Have	you	fallen	in	love	with	collections,	and	do	you	want	to	use	them	on	your	non-Laravel	projects?	With
Taylor’s	blessing,	I	split	out	just	the	collections	functionality	from	Laravel	into	a	separate	project	called	Collect,
and	developers	at	my	company	keep	it	up-to-date	with	Laravel’s	releases.

Just	use	the	composer	require	tightenco/collect	command	and	you’ll	have	the
Illuminate\Support\Collection	class	ready	to	use	in	your	code	—	along	with	the	collect()	helper.

http://bit.ly/2f1It7n

TL;DR
Laravel	provides	a	suite	of	global	helper	functions	that	make	it	simpler	to	do	all	sorts	of
tasks.	They	make	it	easier	to	manipulate	and	inspect	arrays	and	strings,	they	make	it	easier	to
generate	paths	and	URLs,	and	they	provide	simple	access	to	some	consistent	and	vital
functionality.

Laravel’s	collections	are	powerful	tools	that	bring	the	possibility	of	collection	pipelines	to
PHP.

Glossary

Accessor
A	method	defined	on	an	Eloquent	model	that	customizes	how	a	given	property	will	be
returned.	Accessors	make	it	possible	to	define	that	getting	a	given	property	from	a	model
will	return	a	different	(or,	more	likely,	differently	formatted)	value	than	what	is	stored	in
the	database	for	that	property.

ActiveRecord
A	common	database	ORM	pattern,	and	also	the	pattern	that	Laravel’s	Eloquent	uses.	In
ActiveRecord	the	same	model	class	defines	both	how	to	retrieve	and	persist	database
records	and	how	to	represent	them.	Additionally,	each	database	record	is	represented	by
a	single	entity	in	the	application,	and	each	entity	in	the	application	is	mapped	to	a	single
database	record.

Application	test
Often	called	acceptance	or	functional	tests,	application	tests	test	the	entire	behavior	of	the
application,	usually	at	an	outer	boundary,	by	employing	something	like	a	DOM	crawler
—	which	is	exactly	what	Laravel’s	application	test	suite	offers.

Argument	(Artisan)
Arguments	are	parameters	that	can	be	passed	to	Artisan	console	commands.	Arguments
aren’t	prefaced	with	--	or	followed	by	=,	but	instead	just	accept	a	single	value.

Artisan
The	tool	that	makes	it	possible	to	interact	with	Laravel	applications	from	the	command
line.

Assertion
In	testing,	an	assertion	is	the	core	of	the	test:	you	are	asserting	that	something	should	be
equal	to	(or	less	than	or	greater	than)	something	else,	or	that	it	should	have	a	given
count,	or	whatever	else	you	like.	Assertions	are	the	things	that	can	either	pass	or	fail.

Authentication
Correctly	identifying	oneself	as	a	member/user	of	an	application	is	the	act	of
authentication.	Authentication	doesn’t	define	what	you	may	do,	but	simply	who	you	are
(or	aren’t).

Authorization

Assuming	you’ve	either	succeeded	or	failed	at	authenticating	yourself,	authorization
defines	what	you’re	allowed	to	do	given	your	particular	identification.	Authorization	is
about	access	and	control.

Autowiring
When	a	dependency	injection	container	will	inject	an	instance	of	a	resolvable	class
without	a	developer	having	explicitly	taught	it	how	to	resolve	that	class,	that’s	called
autowiring.	With	a	container	that	doesn’t	have	autowiring,	you	can’t	even	inject	a	plain
PHP	object	with	no	dependencies	until	you	have	explicitly	bound	it	to	the	container.	With
autowiring,	you	only	have	to	explicitly	bind	something	to	the	container	if	its
dependencies	are	too	complex	or	vague	for	the	container	to	figure	out	on	its	own.

beanstalkd
Beanstalk	is	a	work	queue.	It’s	simple	and	excels	at	running	multiple	asynchronous	tasks
—	which	makes	it	a	common	driver	for	Laravel’s	queues.	beanstalkd	is	its	daemon.

Blade
Laravel’s	templating	engine.

Carbon
A	PHP	package	that	makes	working	with	dates	much	easier	and	more	expressive.

Cashier
A	Laravel	package	that	makes	billing	with	Stripe	or	Braintree,	especially	in	subscription
contexts,	easier	and	more	consistent	and	powerful.

Closure
Closures	are	PHP’s	version	of	anonymous	functions.	A	closure	is	a	function	that	you	can
pass	around	as	an	object,	assign	to	a	variable,	pass	as	a	parameter	to	other	functions	and
methods,	or	even	serialize.

CodeIgniter
An	older	PHP	framework	that	Laravel	was	inspired	by.

Collection
The	name	of	a	development	pattern	and	also	Laravel’s	tool	that	implements	it.	Like
arrays	on	steroids,	collections	provide	map,	reduce,	filter,	and	many	more	powerful
operations	that	PHP’s	native	arrays	don’t.

Command
The	name	for	a	custom	Artisan	console	task.

Composer
PHP’s	dependency	manager.	Like	Ruby	Gems	or	NPM.

Container
Somewhat	of	a	catchall	word,	in	Laravel	“container”	refers	to	the	application	container
that’s	responsible	for	dependency	injection.	Accessible	via	app()	and	also	responsible
for	resolving	calls	to	controllers,	events,	jobs,	and	commands,	the	container	is	the	glue
that	holds	each	Laravel	app	together.

Contract
Another	name	for	an	interface.

Controller
A	class	that	is	responsible	for	routing	user	requests	through	to	the	application’s	services
and	data,	and	returning	some	form	of	useful	response	back	to	the	user.

CSRF	(cross-site	request	forgery)
A	malicious	attack	where	an	external	site	makes	requests	against	your	application	by
hijacking	your	users’	browsers	(with	JavaScript,	likely)	while	they’re	still	logged	in	to
your	site.	Protected	against	by	adding	a	token	(and	a	check	for	that	token	on	the	POST
side)	to	every	form	on	the	site.

Dependency	injection
Instead	of	instantiating	dependencies	in	a	class,	expect	them	to	be	injected	in	from	the
outside	—	usually	through	the	constructor.

Directive
Blade	syntax	options	like	@if,	@unless,	etc.

Dot	notation
Navigating	down	inheritance	trees	using	.	to	reference	a	jump	down	to	a	new	level.	If
you	have	an	array	like:	['owner'	=>	['address'	=>	['line1'	=>	'123	Main	St.']]],
you	have	three	levels	of	nesting.	Using	dot	notation,	you	would	represent	“123	Main	St.”
as	"owner.address.line1".

Eager	loading
Avoiding	N+1	problems	by	adding	a	second	smart	query	to	your	first	query	to	get	a	set
of	related	items.	Usually	you	have	a	first	query	that	gets	a	collection	of	thing	A.	But	each
A	has	many	B,	and	so	every	time	you	get	the	B	from	an	A,	you	need	a	new	query.	Eager
loading	means	doing	two	queries:	first	you	get	all	the	A’s,	and	second	you	get	all	the	B’s
related	to	all	those	A’s,	in	a	single	query.	Two	queries,	and	you’re	done.

Echo
A	Laravel	product	that	makes	WebSocket	authentication	and	syncing	of	data	simple.

Elixir

Laravel’s	build	tool;	a	wrapper	around	Gulp.

Eloquent
Laravel’s	ActiveRecord	ORM.	The	tool	you’ll	use	to	define	something	like	a	User	model.

Environment	variable
Variables	that	are	defined	in	an	.env	file	that	is	expected	to	be	excluded	from	version
control.	This	means	they	don’t	sync	between	environments	and	they’re	also	kept	safe.

Envoyer
A	Laravel	product	for	zero-down-time	deployment.

Event
Laravel’s	tool	for	implementing	a	pub/sub	or	observer	pattern.	Each	event	represents	that
an	event	happened:	the	name	of	the	event	describes	what	happened	(e.g.,	UserSubscribed)
and	the	payload	allows	for	attaching	relevant	information.	Designed	to	be	“fired”	and
then	“listened”	for	(or	published	and	subscribed,	if	you	prefer	the	pub/sub	concept).

Facade
A	tool	in	Laravel	for	simplifying	access	to	complex	tools.	Facades	provide	static	access
to	core	services	in	Laravel.	Since	every	facade	is	backed	by	a	class	in	the	container,	you
could	replace	any	call	to	something	like	Cache::put();	with	a	two-line	call	to	something
like	$cache	=	app('cache');	$cache->put();.

Flag
A	parameter	anywhere	that	is	on	or	off	(boolean).

Fluent
Methods	that	can	be	chained	one	after	another	are	said	to	be	fluent.	In	order	to	provide	a
fluent	syntax,	each	method	must	return	the	instance,	preparing	it	to	be	chained	again.	This
allows	for	something	like	People::where('age',	'>',	14)->orderBy('name')->get().

Flysystem
The	package	that	Laravel	uses	to	facilitate	its	local	and	cloud	file	access.

Forge
A	Laravel	product	that	makes	it	easy	to	spin	up	and	manage	virtual	servers	on	major
cloud	providers	like	DigitalOcean	and	AWS.

FQCN	(fully-qualified	class	name)
The	full	namespaced	name	of	any	given	class,	trait,	or	interface.	Controller	is	the	class
name;	Illuminate\Routing\Controller	is	the	FQCN.

Gulp

A	JavaScript-based	build	tool.

Helper
A	globally	accessible	PHP	function	that	makes	some	other	functionality	easier	—	for
example,	array_get()	simplifies	the	logic	of	looking	up	results	from	arrays.

Homestead
A	Laravel	tool	that	wraps	Vagrant	and	makes	it	easier	to	spin	up	Forge-parallel	virtual
servers	for	local	Laravel	development.

Illuminate
The	top-level	namespace	of	all	Laravel	components.

Integration	test
Integration	tests	test	the	way	individual	units	work	together	and	pass	messages.

IoC	(inversion	of	control)
The	concept	of	giving	“control”	over	how	to	make	a	concrete	instance	of	an	interface	to
the	higher-level	code	of	the	package	instead	of	the	lower-level	code.	Without	IoC,	each
individual	controller	and	class	might	decide	what	instance	of	Mailer	it	wanted	to	create.
IoC	makes	it	so	that	the	low-level	code	—	those	controllers	and	classes	—	just	get	to	ask
for	a	Mailer,	and	some	high-level	configuration	code	defines	once	per	application	which
instance	should	be	provided	to	satisfy	that	request.

Job
A	class	that	intends	to	encapsulate	a	single	task.	Jobs	are	intended	to	be	able	to	be	pushed
onto	a	queue	and	run	asynchronously.

JSON
JavaScript	Object	Notation.	A	syntax	for	data	representation.

JWT	(JSON	Web	Token)
A	JSON	object	containing	all	of	the	information	necessary	to	determine	a	user ’s
authentication	state	and	access	permissions.	This	JSON	object	is	digitally	signed,	which
is	what	makes	it	trustworthy,	using	HMAC	or	RSA.	Usually	delivered	in	the	header.

Mass	assignment
The	ability	to	pass	many	parameters	at	once	to	create	or	update	an	Eloquent	model,	using
a	keyed	array.

Middleware
A	series	of	wrappers	around	an	application	that	filter	and	decorate	its	inputs	and	outputs.

Memcached

An	in-memory	data	store	designed	to	provide	simple	but	fast	data	storage.	Memcached
only	supports	a	basic	key/value	store.

Migration
A	manipulation	to	the	state	of	the	database,	stored	in	and	run	from	code.

Mockery
A	library	included	with	Laravel	that	makes	it	easy	to	mock	PHP	classes	in	your	tests.

Model	factory
A	tool	for	defining	how	the	application	can	generate	an	instance	of	your	model	if	needed
for	testing	or	seeding.	Usually	paired	with	a	fake	data	generator	like	Faker.

Multitenancy
A	single	app	serving	multiple	clients,	each	of	which	has	its	customers.	Multitenancy	often
suggests	that	each	client	of	your	application	gets	its	own	theming	and	domain	name,	with
which	to	differentiate	its	service	to	its	customers	vis-à-vis	your	other	clients’	potential
services.

Mutator
A	tool	in	Eloquent	that	allows	you	to	manipulate	the	data	being	saved	to	a	model	property
before	it	is	saved	to	the	database.

Nginx
A	web	server	similar	to	Apache.

Option	(Artisan)
Like	arguments,	options	are	parameters	that	can	be	passed	to	Artisan	commands.	They’re
prefaced	with	--	and	can	be	used	as	a	flag	(--force)	or	to	provide	data	(--userId=5).

ORM	(object-relational	mapper)
A	design	pattern	that	is	centered	around	using	objects	in	a	programming	language	to
represent	data,	and	its	relationships,	in	a	relational	database.

Passport
A	Laravel	package	that	can	be	used	to	easily	add	an	OAuth	authentication	server	to	your
Laravel	app.

PHPSpec
A	PHP	testing	framework.

PHPUnit
A	PHP	testing	framework.	The	most	common	and	connected	to	the	most	of	Laravel’s
custom	testing	code.

Polymorphic
In	database	terms,	able	to	interact	with	multiple	database	tables	with	similar
characteristics.	A	polymorphic	relationship	will	allow	entities	of	multiple	models	to	be
attached	in	the	same	way.

Preprocessor
A	build	tool	that	takes	in	a	special	form	of	a	language	(for	CSS,	one	special	form	is
LESS)	and	generates	code	with	just	the	normal	language	(CSS).	Preprocessors	build	in
tools	and	features	that	are	not	in	the	core	language.

Primary	key
Most	database	tables	have	a	single	column	that	is	intended	to	represent	each	row.	This	is
called	the	primary	key	and	is	commonly	named	id.

Queue
A	stack	onto	which	jobs	can	be	added.	Usually	associated	with	a	queue	worker,	which
pulls	jobs	one	at	a	time	from	a	queue,	works	on	them,	and	then	discards	them.

Redis
Like	Memcached,	a	data	store	simpler	than	most	relational	databases	but	powerful	and
fast.	Redis	supports	a	very	limited	set	of	structures	and	data	types	but	makes	up	for	it	in
speed	and	scalability.

REST
Representational	State	Transfer,	the	most	common	format	for	APIs	these	days.	Usually
suggests	that	interactions	with	an	API	should	each	authenticate	separately	and	should	be
“stateless”;	also	usually	suggests	that	they	use	the	HTTP	verbs	for	basic	differentiation	of
requests.

Route
A	definition	of	a	way	or	ways	the	user	might	visit	a	web	application.	A	route	is	a	pattern
definition;	it	can	be	something	like	/users/5,	or	/users,	or	/users/{id}.

SaaS
Software	as	a	Service.	Web-based	applications	that	you	pay	money	to	use.

Scope
In	Eloquent,	a	tool	for	defining	how	to	consistently	and	simply	narrow	down	a	query.

Scout
A	Laravel	package	for	full-text	search	on	Eloquent	models.

Serialization

The	process	of	converting	more	complex	data	(usually	an	Eloquent	model)	to	something
simpler	(in	Laravel,	usually	an	array	or	JSON).

Service	provider
A	structure	in	Laravel	that	registers	and	boots	classes	and	container	bindings.

Soft	delete
Marking	a	database	row	as	“deleted”	without	actually	deleting	it,	usually	paired	with	an
ORM	that	by	default	hides	all	“deleted”	rows.

Spark
A	Laravel	tool	that	makes	it	easy	to	spin	up	a	new	subscription-based	SaaS	app.

Symfony
A	PHP	framework	that	focuses	on	building	excellent	components	and	making	them
accessible	to	others.	Symfony’s	HTTP	Foundation	is	at	the	core	of	Laravel	and	every
other	modern	PHP	framework.

Tinker
Laravel’s	REPL,	or	read–evaluate–print	loop.	It’s	a	tool	that	allows	you	to	perform
complex	PHP	operations	within	the	full	context	of	your	app	from	the	command	line.

TL;DR
Too	long;	didn’t	read.	“Summary.”

Typehint
Prefacing	a	variable	name	in	a	method	signature	with	a	class	or	interface	name.	Tells
PHP	(and	Laravel,	and	other	developers)	that	the	only	thing	that’s	allowed	to	be	passed	in
that	parameter	is	an	object	with	the	given	class	or	interface.

Unit	test
Unit	tests	target	small,	relatively	isolated	units	—	a	class	or	method,	usually.

Vagrant
A	command-line	tool	that	makes	it	easy	to	build	virtual	machines	on	your	local	computer
using	predefined	images.

Valet
A	Laravel	package	(for	Mac	OS	users,	but	there	are	forks	for	Linux	and	Windows)	that
makes	it	easy	to	serve	your	applications	from	your	development	folder	of	choice,
without	worrying	about	Vagrant	or	virtual	machines.

Validation
Ensuring	that	user	input	matches	expected	patterns.

View	composer
A	tool	that	defines	that,	every	time	a	given	view	is	loaded,	it	will	be	provided	a	certain	set
of	data.

View
A	template	file	that	defines	HTML	to	be	sent	to	the	end	user;	often	includes	accepting	data
from	a	controller	and	formatting	it	as	part	of	the	HTML.

Index

Symbols

arrow

->	chaining	methods,	Route	Names,	Middleware

->	traversing	JSON	structure,	JSON	operations

=>	preceding	Tinker	responses,	Tinker

*	(asterisk),	following	array	arguments	or	options,	Array	arguments	and	array	options

@	(at	sign)

in	controller/method	reference,	Auth::routes()

preceding	Blade	directives,	Blade	Templating

preceding	Blade	echo	syntax,	Echoing	Data

\	(backslash),	escaping	in	Artisan	commands,	Receiving	the	Message

{	}	(braces)

enclosing	Artisan	command	arguments,	Arguments,	required,	optional,	and/or	with
defaults

enclosing	route	parameters,	Route	Model	Binding,	From	Route	Parameters

{{	}},	Blade	echo	syntax,	escaped,	Echoing	Data,	{{	Versus	{!!

{!!	!!},	Blade	echo	syntax,	not	escaped,	Echoing	Data,	{{	Versus	{!!

::	(colon,	double),	in	facades,	Facades	and	the	Container

=	(equal	sign),	in	Artisan	argument	definition,	Arguments,	required,	optional,	and/or
with	defaults

-	-	(hyphen,	double),	preceding	Artisan	command	options,	Options,	required	values,	value

defaults,	and	shortcuts

.	(period),	dot	notation,	Glossary

?	(question	mark)

following	optional	Artisan	command	arguments,	Arguments,	required,	optional,
and/or	with	defaults

following	optional	parameters,	Route	Parameters

query	parameters,	Parameter	bindings	and	named	bindings

/	(slash),	escaping	in	Artisan	commands,	Controller	Organization	and	JSON	Returns

A

abilities	(rules)	for	authorization,	Defining	Authorization	Rules

abort()	helper,	Aborting	the	Request,	Misc

abort_if()	helper,	Aborting	the	Request,	Misc

abort_unless()	helper,	Aborting	the	Request,	Misc

acceptance	tests	(see	application	tests)

accepts()	method,	Request,	User	and	request	state

access	control	list	(ACL)	(see	authorization)

accessors,	Accessors,	Hiding	attributes	from	JSON,	Testing,	Glossary

ACL	(access	control	list)	(see	authorization)

action()	helper,	Other	Redirect	Methods,	URLs

ActiveRecord	pattern,	Introduction	to	Eloquent,	Glossary

(see	also	Eloquent)

add()	method,	Cache,	The	Methods	Available	on	Cache	Instances

addGlobalScope()	method,	Global	scopes

after()	method,	Blueprint,	Building	extra	properties	fluently

after()	method,	tasks,	Task	Hooks

Algolia	SDK,	Installing	Scout

aliases,	binding	to,	Binding	to	Singletons,	Aliases,	and	Instances

all()	method,	collection,	A	Few	Methods

all()	method,	Eloquent,	Retrieving	Data	with	Eloquent,	Get	many

all()	method,	ParameterBag,	Basic	user	input

all()	method,	Request,	$request->all(),	Eloquent	Model	Mass	Assignment,	Basic	user
input

all()	method,	Session,	The	Methods	Available	on	Session	Instances

allDirectories()	method,	Storage,	Using	the	Storage	Facade

allFiles()	method,	Storage,	Using	the	Storage	Facade

allows()	method,	Gate,	The	Gate	Facade	(and	Injecting	Gate)

anonymous	functions	(see	closures)

anticipate()	method,	Prompts

api	guard,	Guards

api	middleware	group,	Using	middleware	groups

API	routes,	Route	Definitions

(see	also	routes)

api.php	file,	Route	Definitions

APIs,	Writing	APIs-The	Basics	of	REST-Like	JSON	APIs

authentication	with	API	tokens,	Laravel	5.2+	API	Token	Authentication-Laravel	5.2+
API	Token	Authentication

authentication	with	Passport,	API	Authentication	with	Laravel	Passport-Passport
Scopes

filtering	results,	Filtering	Your	API	Results

JSON	for,	The	Basics	of	REST-Like	JSON	APIs,	Controller	Organization	and	JSON
Returns,	Sorting	and	Filtering

nesting	relationships	between	resources,	Nesting	and	Relationships-Nesting	and
Relationships

paginating	results,	Eloquent	Pagination-Eloquent	Pagination

request	headers,	reading,	Reading	and	Sending	Headers,	Reading	Request	Headers	in
Laravel

resource	controllers,	Controller	Organization	and	JSON	Returns-Controller
Organization	and	JSON	Returns

response	headers,	sending,	Reading	and	Sending	Headers

REST	style	of,	The	Basics	of	REST-Like	JSON	APIs-The	Basics	of	REST-Like	JSON
APIs

sorting	results,	Sorting	and	Filtering-Sorting	Your	API	Results

testing,	Testing

transforming	results,	Transforming	Results-Writing	Your	Own	Transformer

.app	domain,	Configuring	Homestead

app	folder,	The	Folders

app()	helper,	Getting	a	Request	Object	in	Laravel,	The	app()	Global	Helper

app-namespaced	commands,	Artisan,	The	Grouped	Commands

app.js	file,	Bringing	Echo	into	your	project

app.php	file	in	config,	Installing	Scout,	The	broadcast	service	provider

append()	method,	Storage,	Using	the	Storage	Facade

appendOutputTo()	method,	tasks,	Handling	Task	Output

application

bootstrapping,	Bootstrapping	the	Application-Service	Providers

exiting,	Misc

kernel,	Laravel’s	kernel

lifecycle,	Laravel’s	Request	Lifecycle-Service	Providers

application	container	(see	container)

application	tests,	Testing,	Application	Testing-Authentication	and	Sessions,	Glossary

assertions,	Custom	Application	Testing	Assertions-JSON	and	Non-visit()	Application
Testing	Assertions,	Glossary

clicking	and	forms,	Clicking	and	Forms-Clicking	and	Forms

jobs	and	events,	Jobs	and	Events

visiting	routes,	“Visiting”	Routes-“Visiting”	Routes

AppServiceProvider,	Service	Providers

app_path()	helper,	Application	Paths

argument()	method,	Artisan,	argument()

arguments	(Artisan),	Glossary

arrays

as	Artisan	arguments	or	options,	Array	arguments	and	array	options

collections	as	alternative	to,	Introducing	the	base	collection

converting	to	collections,	Misc

helpers	for,	Arrays-Arrays

array_filter()	method,	The	Basics	of	Collections

array_first()	helper,	Arrays

array_get()	helper,	Arrays

array_has()	helper,	Arrays

array_map()	method,	The	Basics	of	Collections

array_pluck()	helper,	Arrays

arrow

->	chaining	methods,	Route	Names,	Middleware

->	traversing	JSON	structure,	JSON	operations

=>	preceding	Tinker	responses,	Tinker

Artisan	commands,	An	Introduction	to	Artisan-Calling	Artisan	Commands	in	Normal
Code,	Glossary,	Glossary

arguments	for,	Glossary

calling	from	code,	A	Sample	Command,	Calling	Artisan	Commands	in	Normal	Code

calling	other	commands	from,	Calling	Artisan	Commands	in	Normal	Code

custom,	Writing	Custom	Artisan	Commands-Input	descriptions

escaping	slashes	in,	Controller	Organization	and	JSON	Returns

listing,	An	Introduction	to	Artisan

options	for,	Options-Options,	Glossary

output	during,	Output-Progress	bars

progress	bars	for,	Progress	bars

prompting	for	user	input,	Prompts-Prompts

queueing,	The	Grouped	Commands,	Queues	Supporting	Other	Functions

scheduling	as	tasks,	Available	Task	Types

testing,	Testing,	Artisan	and	Seed

using	input	from,	Using	Input-Prompts

Artisan	facade,	Calling	Artisan	Commands	in	Normal	Code,	Testing

artisan	file,	The	Loose	Files

artisan()	method,	TestCase,	Artisan	and	Seed

ask()	method,	Prompts

assertEquals()	method,	TestCase,	Cache

assertHasOldInput()	method,	TestCase,	Session

assertions,	Custom	Application	Testing	Assertions-JSON	and	Non-visit()	Application
Testing	Assertions,	Glossary

assertNotSent()	method,	notification,	Notifications

assertPageLoaded()	method,	TestCase,	Custom	Application	Testing	Assertions

assertRedirectedTo()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assertRedirectedToAction()	method,	TestCase,	JSON	and	Non-visit()	Application
Testing	Assertions

assertRedirectedToRoute()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assertResponseOK()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assertResponseStatus()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assertSent()	method,	notification,	Notifications

assertSessionHas()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions,	Session

assertSessionHasAll()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions,	Session

assertSessionHasErrors()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions,	Session

assertSessionMissing()	method,	TestCase,	Session

assertViewHas()	method,	TestCase,	Testing,	JSON	and	Non-visit()	Application	Testing
Assertions

assertViewHasAll()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assertViewMissing()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing
Assertions

assets	folder,	Elixir	Folder	Structure

associate()	method,	Eloquent,	One	to	many

asterisk	(*),	following	array	arguments	or	options,	Array	arguments	and	array	options

at	sign	(@)

in	controller/method	reference,	Auth::routes()

preceding	Blade	directives,	Blade	Templating

preceding	Blade	echo	syntax,	Echoing	Data

attach()	method,	Eloquent,	Many	to	many

attach()	method,	mailable,	Methods	Available	in	build()

attach()	method,	TestCase,	Clicking	and	Forms

attachData()	method,	mailable,	Methods	Available	in	build()

attempt()	method,	authentication,	“Remember	Me”

attempts()	method,	jobs,	Limiting	the	number	of	tries

attribute	casting,	Attribute	casting

auth	commands,	Artisan,	The	Grouped	Commands

Auth	facade,	Using	the	auth()	Global	Helper	and	the	Auth	Facade

auth	middleware,	Auth	Middleware

auth	scaffold,	The	Auth	Scaffold-The	Auth	Scaffold

auth()	helper,	Using	the	auth()	Global	Helper	and	the	Auth	Facade,	Misc

auth.basic	middleware,	Auth	Middleware

auth.php	file,	Changing	the	Default	Guard,	Installing	Passport

Auth::routes()	facade,	Auth::routes()

AuthController,	User	Authentication	and	Authorization

Authenticatable	contract,	The	User	Model	and	Migration

authentication,	User	Authentication	and	Authorization-Auth	Events,	Glossary

APIs	for,	API	Authentication	with	Laravel	Passport-Laravel	5.2+	API	Token
Authentication

contracts,	The	User	Model	and	Migration

create_users_table	migration,	The	User	Model	and	Migration

events,	Auth	Events

ForgotPasswordController,	ForgotPasswordController

guards	for,	Guards-Custom	User	Providers	for	Nonrelational	Databases

LoginController,	LoginController-ThrottlesLogins	trait

manual	authentication,	Manually	Authenticating	Users

RegisterController,	RegisterController-RegistersUsers	trait

RegistersUsers	trait,	RegistersUsers	trait

remember	me	access	token,	“Remember	Me”

ResetPasswordController,	ResetPasswordController

route	middleware	for,	Auth	Middleware

routes	for,	Auth::routes()

setting	up,	The	Auth	Scaffold

testing,	Testing-Testing,	Authentication	and	Sessions

User	model,	The	User	Model	and	Migration-The	User	Model	and	Migration

views	for,	The	Auth	Scaffold-The	Auth	Scaffold

WebSocket	(see	Echo)

Authorizable	contract,	The	User	Model	and	Migration

Authorizable	trait,	Checking	on	the	User	Instance

authorization,	The	User	Model	and	Migration,	Authorization	(ACL)	and	Roles-
Overriding	policies,	Glossary

Authorizable	contract,	The	User	Model	and	Migration

AuthorizesRequests	trait,	Controller	Authorization-Checking	on	the	User	Instance

Blade	checks,	Blade	Checks

checking	user	capabilities,	Checking	on	the	User	Instance-Intercepting	Checks

Gate	facade,	Authorization	(ACL)	and	Roles,	The	Gate	Facade	(and	Injecting	Gate)

overriding	checks,	Intercepting	Checks

Passport	package,	Overriding	policies

policies,	Policies-Overriding	policies

route	middleware	for,	The	Authorize	Middleware

rules	(abilities)	for,	defining,	Defining	Authorization	Rules

testing,	Testing-Testing

authorization	code	grant,	Passport,	Authorization	code	grant-Authorization	code	grant

authorize()	method,	AuthorizesRequests	trait,	Controller	Authorization

authorize()	method,	form	request,	Creating	a	Form	Request

authorizeForUser()	method,	AuthorizesRequests	trait,	Controller	Authorization

authorizeResource()	method,	AuthorizesRequests	trait,	Controller	Authorization

AuthorizesRequests	trait,	Controller	Authorization-Checking	on	the	User	Instance

AuthServiceProvider,	Defining	Authorization	Rules,	Generating	policies,	Service
Providers,	Passport	Scopes

autowiring,	How	the	Container	Is	Wired-How	the	Container	Is	Wired,	Glossary

avg()	method,	collection,	A	Few	Methods

avg()	method,	DB,	Ending/returning	methods

avg()	method,	Eloquent,	Aggregates

away()	method,	redirects,	Other	Redirect	Methods

B

back()	helper,	redirect()->back(),	Redirect	responses,	Misc

backslash	(\),	escaping	in	Artisan	commands,	Receiving	the	Message

base_path()	helper,	Application	Paths

be()	method,	TestCase,	Testing,	Authentication	and	Sessions

beanstalkd	queues,	Basic	Queue	Configuration,	Glossary

before()	method,	tasks,	Task	Hooks

beginTransaction()	method,	DB,	Transactions

Behat,	Testing

belongsTo()	method,	Eloquent,	One	to	one,	One	to	many,	Child	Records	Updating
Parent	Record	Timestamps

belongsToMany()	method,	Eloquent,	Many	to	many,	Child	Records	Updating	Parent
Record	Timestamps

bigIncrements()	method,	Blueprint,	Creating	columns

bigInteger()	method,	Blueprint,	Creating	columns

billing	(see	Cashier	package)

binary()	method,	Blueprint,	Creating	columns

bind()	method,	Binding	to	a	Closure,	Binding	to	Singletons,	Aliases,	and	Instances

binding

classes	to	container,	Binding	Classes	to	the	Container-Contextual	Binding

data	to	views,	Binding	Data	to	Views	Using	View	Composers-Class-based	view
composers

PDO	parameter	binding,	Parameter	bindings	and	named	bindings

route	model	binding,	Route	Model	Binding-Custom	Route	Model	Binding

Blade,	Blade	Templating-Blade	Templating,	Glossary

checks	using,	Blade	Checks

conditionals,	Conditionals

custom	directives,	Custom	Blade	Directives-Example:	Using	Custom	Blade	Directives
for	a	Multitenant	App

directives	for,	Blade	Templating,	Glossary

echoing	PHP	in,	Echoing	Data

$expression	parameter,	Parameters	in	Custom	Blade	Directives

included	view	partials,	@include,	@each

loops,	Loops-@forelse,	@each

multitenancy	using,	Example:	Using	Custom	Blade	Directives	for	a	Multitenant	App-
Example:	Using	Custom	Blade	Directives	for	a	Multitenant	App

or	helper,	or

sections,	Defining	Sections	with	@section/@show	and	@yield

service	injection,	Blade	Service	Injection-Blade	Service	Injection

templates,	Views,	Template	Inheritance-@each

Blueprint	class,	Creating	columns-Building	extra	properties	fluently

boolean()	method,	Blueprint,	Creating	columns

boot()	method,	Eloquent	model,	Global	scopes

boot()	method,	service	providers,	Custom	Route	Model	Binding,	Defining	Authorization
Rules,	Service	Providers,	Passport	Scopes

bootstrap	folder,	The	Folders

bootstrapping	application,	Bootstrapping	the	Application-Service	Providers

braces	({	})

enclosing	Artisan	command	arguments,	Arguments,	required,	optional,	and/or	with
defaults

enclosing	route	parameters,	Route	Model	Binding,	From	Route	Parameters

{{	}},	Blade	echo	syntax,	escaped,	Echoing	Data,	{{	Versus	{!!

{!!	!!},	Blade	echo	syntax,	not	escaped,	Echoing	Data,	{{	Versus	{!!

broadcast	notifications,	Broadcast	notifications

broadcast()	helper,	Excluding	the	current	user	from	broadcast	events,	Excluding	the
current	user

broadcastAs()	method,	events,	Broadcasting	an	Event

broadcasting	events	(see	WebSockets)

broadcasting.php	file,	Configuration	and	Setup

broadcastOn()	method,	events,	Firing	an	Event,	Broadcasting	an	Event

BroadcastServiceProvider,	The	broadcast	service	provider

broadcastWith()	method,	events,	Broadcasting	an	Event

build()	method,	mailable,	Basic	“Mailable”	Mail	Usage

C

cache	commands,	Artisan,	The	Grouped	Commands

Cache	facade,	Accessing	the	Cache

cache()	helper,	Accessing	the	Cache

cache.php	file,	Cache

caches

accessing,	The	Grouped	Commands,	Cache-The	Methods	Available	on	Cache	Instances

data	stores	used	by,	Other	Database	Configuration	Options

for	custom	directive	results,	Custom	Blade	Directives

for	routes,	Route	Caching

testing,	Cache

call()	method,	Artisan,	Calling	Artisan	Commands	in	Normal	Code

call()	method,	container,	Method	Injection

call()	method,	TestCase,	“Visiting”	Routes,	Cookies

@can	directive,	Blade	Checks

can()	method,	Authorizable,	Checking	on	the	User	Instance

@cannot	directive,	Blade	Checks

cannot()	method,	Authorizable,	Checking	on	the	User	Instance

CanResetPassword	contract,	The	User	Model	and	Migration

cant()	method,	Authorizable,	Checking	on	the	User	Instance

capture()	method,	Request,	The	Request	Object

Carbon	package,	Attribute	casting,	The	Methods	Available	on	Cache	Instances,	Glossary

Cashier	package,	Glossary

chaining	methods,	Route	Names,	Middleware

change()	method,	Modifying	columns

channel()	method,	Broadcast,	Binding	authorization	definitions	for	WebSocket	channels

channel()	method,	Echo,	Using	Echo	for	basic	event	broadcasting

char()	method,	Blueprint,	Creating	columns

check()	method,	authorization,	Using	the	auth()	Global	Helper	and	the	Auth	Facade

check()	method,	TestCase,	Clicking	and	Forms

choice()	method,	Prompts

chunk()	method,	collection,	A	Few	Methods

chunk()	method,	Eloquent,	Chunking	responses	with	chunk()

classes

autowiring	to	container,	Glossary

FQCN	(fully-qualified	class	name)	for,	Glossary

view	composers	using,	Class-based	view	composers-Class-based	view	composers

clear	command,	Artisan,	Basic	Artisan	Commands

clearInputs()	method,	TestCase,	Clicking	and	Forms

click()	method,	TestCase,	Clicking	and	Forms

closures,	Route	Definitions,	Glossary

binding	to,	Binding	to	a	Closure

defining	Artisan	commands	as,	Registering	Commands

defining	route	groups	using,	Route	Groups

defining	routes	using,	Route	Definitions-Route	Definitions,	Route	Handling

view	composers	using,	Closure-based	view	composers

Cloud	storage	(see	storage)

cloud-based	mail,	Mail

CodeIgniter	framework,	Glossary

collect()	helper,	Introducing	the	base	collection,	Misc,	The	Basics	of	Collections

Collection	class,	Raw	selects,	Introducing	the	base	collection-Introducing	the	base
collection

Collection	pattern,	Glossary

collections,	Collections-A	Few	Methods

compared	to	arrays,	The	Basics	of	Collections-The	Basics	of	Collections

converting	to	arrays,	A	Few	Methods

returned	by	Eloquent,	Eloquent	Collections-What	Eloquent	collections	add

serialization,	Eloquent	Serialization

using	outside	Laravel,	A	Few	Methods

colon,	double	(::),	in	facades,	Facades	and	the	Container

commands,	Artisan	(see	Artisan	commands)

comment()	method,	Artisan,	Output

commit()	method,	DB,	Transactions

compiled.php	file,	Bootstrapping	the	Application

Composer,	Composer,	Bootstrapping	the	Application,	Glossary

commands	for,	Installing	Laravel	with	the	Laravel	Installer	Tool,	Installing	Laravel
with	Composer’s	create-project	Feature

new	projects,	creating,	Installing	Laravel	with	Composer’s	create-project	Feature

service	provider	features	with,	Service	Providers

composer.json	file,	The	Loose	Files

composer.lock	file,	The	Loose	Files

conditionals	(Blade),	Conditionals

config	commands,	Artisan,	The	Grouped	Commands

config	folder,	The	Folders,	Configuration

config()	helper,	Misc

config/app.php	file,	Installing	Scout,	The	broadcast	service	provider

configuration	files,	The	Folders,	Configuration,	Changing	the	Default	Guard,
Application	Paths

config_path()	helper,	Application	Paths

confirm()	method,	Artisan,	Prompts

Console	component,	Symfony,	An	Introduction	to	Artisan

constructor	injection,	A	Quick	Introduction	to	Dependency	Injection,	Dependency
Injection	and	Laravel,	Constructor	Injection

contact	information	for	this	book,	How	to	Contact	Us

container,	Injecting	Dependencies	into	Controllers,	Glossary

accessing	facade	backing	class	from,	How	Facades	Work

accessing	objects	from,	The	app()	Global	Helper

autowiring,	How	the	Container	Is	Wired-How	the	Container	Is	Wired

binding	classes	to,	Binding	Classes	to	the	Container-Contextual	Binding

classes	in,	autowiring,	Glossary

constructor	injection,	Constructor	Injection

dependency	injection,	A	Quick	Introduction	to	Dependency	Injection-Dependency
Injection	and	Laravel

method	injection,	Method	Injection

registering	bindings	for,	Service	Providers

contextual	binding,	Contextual	Binding

contracts	(see	interfaces)

Contracts	namespace,	The	User	Model	and	Migration

controllers,	Controllers-Binding	a	resource	controller,	Glossary

applying	middleware	using,	Middleware

creating,	Controllers-Controllers

getting	and	handling	user	input,	Getting	User	Input-Getting	User	Input

handling	routes	using,	Route	Handling

injecting	dependencies	into,	Injecting	Dependencies	into	Controllers-Injecting
Dependencies	into	Controllers

method	reference	syntax	for,	Auth::routes()

namespace	for,	Controllers

resource	controllers,	Resource	Controllers-Binding	a	resource	controller,	Controller
Organization	and	JSON	Returns-Controller	Organization	and	JSON	Returns

Cookie	facade,	The	Cookie	facade-The	Cookie	facade

cookie()	helper,	The	cookie()	global	helper

cookie()	method,	Request,	Persistence,	Reading	cookies	from	request	objects

cookie()	method,	Response,	Setting	cookies	on	response	objects

CookieJar	class,	Cookies	in	Laravel,	The	Cookie	facade,	The	cookie()	global	helper

cookies,	Cookies-Setting	cookies	on	response	objects

accessing	with	Cookie	facade,	The	Cookie	facade-The	Cookie	facade

accessing	with	cookie()	helper,	The	cookie()	global	helper

accessing	with	Request	and	Response,	Cookies	on	request	and	response	objects

configuring,	The	Cookie	facade

disabling	encryption	for,	Cookies

locations	of,	Cookies	in	Laravel

manually	encrypting	for,	Cookies

testing,	Cookies-Cookies

copy()	method,	Storage,	Using	the	Storage	Facade

count()	method,	collection,	A	Few	Methods

count()	method,	DB,	Ending/returning	methods

count()	method,	Eloquent,	Aggregates

count()	method,	ParameterBag,	Basic	user	input

create()	method,	model	factories,	Using	a	model	factory,	Inserts,	Mass	assignment

create()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

create()	method,	Schema,	Creating	tables

create,	read,	update,	delete	(see	CRUD)

CreateFreshApiToken	middleware,	Tokens	from	Laravel	session	authentication
(synchronizer	tokens),	Tokens	from	Laravel	session	authentication	(synchronizer	tokens)

create_users_table	migration,	Defining	Migrations,	The	User	Model	and	Migration

cron	jobs,	scheduler	as	alternative	to,	Scheduler

cross-site	request	forgery	(CSRF),	Glossary

CRUD	(create,	read,	update,	delete),	Controllers

(see	also	resource	controllers)

CSRF	(cross-site	request	forgery),	CSRF	Protection-CSRF	Protection,	Bringing	Echo
into	your	project,	Glossary

csrf_field()	helper,	Misc

csrf_token()	helper,	Misc

CSS

preprocessor	for,	Elixir-Elixir,	What	Does	Elixir	Provide?,	Glossary

preprocessorless,	in	Elixir,	Preprocessorless	CSS

custom	route	model	binding,	Custom	Route	Model	Binding

D

database	folder,	The	Folders

database	notifications,	Database	notifications

DatabaseMigrations	trait,	DatabaseMigrations

databases,	Database	and	Eloquent

(see	also	Eloquent)

connections	to,	configuring,	Configuration-Other	Database	Configuration	Options

custom	guard	providers	for,	Creating	a	Custom	User	Provider

database	types	supported,	Database	Connections,	Query	Builder

Homestead,	Laravel	Homestead-Connecting	to	Homestead	databases	from	desktop
applications,	Glossary

migrations,	Migrations-Running	Migrations

paginating	results	from,	Paginating	Database	Results-Manually	Creating	Paginators

query	builder,	Query	Builder-Transactions

seeders,	Seeding-Defining	and	accessing	multiple	model	factory	types

testing,	Testing-Testing

Tinker	interacting	with,	Tinker

DatabaseSeeder	class,	Seeding

DatabaseTransactions	trait,	DatabaseTransactions

database_path()	helper,	Application	Paths

date	mutators,	Date	mutators

dates	and	times	(see	Carbon	package;	scheduler;	timestamps)

datetime()	method,	Blueprint,	Creating	columns

db	commands,	Artisan,	The	Grouped	Commands

DB	facade,	Basic	Usage	of	the	DB	Facade

db:seed	command,	Artisan,	Seeding

dd()	helper,	Misc

Dead	Man’s	Snitch,	Handling	Task	Output

decimal()	method,	Blueprint,	Creating	columns

decrement()	method,	Cache,	The	Methods	Available	on	Cache	Instances

decrement()	method,	DB,	Updates

default()	method,	Blueprint,	Building	extra	properties	fluently

define()	method,	Gate,	The	Gate	Facade	(and	Injecting	Gate)

define()	method,	model	factories,	Creating	a	model	factory

delay()	method,	jobs,	Customizing	the	delay

delay()	method,	notification,	Queueing	Notifications

DELETE	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

for	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

routes	based	on,	Route	Verbs

delete()	method,	DB,	Raw	deletes,	Deletes

delete()	method,	Eloquent,	Normal	deletes

delete()	method,	Storage,	Using	the	Storage	Facade

delete()	method,	TestCase,	“Visiting”	Routes

deleteDirectory()	method,	Storage,	Using	the	Storage	Facade

deleted_at	column,	Soft	deletes

deletes,	soft,	Glossary

denies()	method,	Gate,	The	Gate	Facade	(and	Injecting	Gate)

dependency	injection,	A	Quick	Introduction	to	Dependency	Injection-Dependency
Injection	and	Laravel,	Glossary

constructor	injection,	A	Quick	Introduction	to	Dependency	Injection,	Dependency
Injection	and	Laravel,	Constructor	Injection

method	injection,	A	Quick	Introduction	to	Dependency	Injection,	Method	Injection

setter	injection,	A	Quick	Introduction	to	Dependency	Injection

testing	using,	Testing

destroy()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

detach()	method,	Eloquent,	Many	to	many

development	environments,	Local	Development	Environments-Connecting	to	Homestead
databases	from	desktop	applications

DI	(dependency	injection)	container	(see	container)

directives	(Blade),	Blade	Templating,	Glossary

directories()	method,	Storage,	Using	the	Storage	Facade

disk()	method,	Storage,	Using	the	Storage	Facade,	Basic	File	Uploads	and	Manipulation

dispatch()	helper,	Pushing	a	job	onto	a	queue,	Misc

DispatchesJobs	trait,	Pushing	a	job	onto	a	queue

dissociate()	method,	Eloquent,	One	to	many

distinct()	method,	DB,	Constraining	methods

dnsmasq	tool,	Laravel	Valet

domains,	top-level,	Configuring	Homestead

dontSee()	method,	TestCase,	Custom	Application	Testing	Assertions

dontSeeInDatabase()	method,	TestCase,	Custom	Application	Testing	Assertions

dontSeeInField()	method,	TestCase,	Custom	Application	Testing	Assertions

dontSeeIsChecked()	method,	TestCase,	Custom	Application	Testing	Assertions

dontSeeIsSelected()	method,	TestCase,	Custom	Application	Testing	Assertions

dontSeeJson()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing	Assertions

dontSeeLink()	method,	TestCase,	Custom	Application	Testing	Assertions

dot	notation	(.),	Glossary

double()	method,	Blueprint,	Creating	columns

down	command,	Artisan,	Basic	Artisan	Commands

down()	method,	migrations,	Defining	Migrations,	Defining	Migrations

download	responses,	Download	responses

download()	method,	Response,	response()->download()	and	->file(),	Download	responses

E

e()	helper,	The	String	Helpers	and	Pluralization,	Strings

@each	directive,	Blade,	@each

each()	method,	collection,	A	Few	Methods

eager	loading,	Eager	loading-Eager	loading	only	the	count,	Glossary

Echo,	Broadcasting	Events	over	WebSockets,	and	Laravel	Echo,	Receiving	the	Message,
Advanced	Broadcasting	Tools-Subscribing	to	notifications	with	Echo,	Glossary

authorization	for	channels,	Binding	authorization	definitions	for	WebSocket	channels-
Binding	authorization	definitions	for	WebSocket	channels

excluding	user	from	events,	Excluding	the	current	user	from	broadcast	events,
Excluding	the	current	user

JavaScript	package	for,	Laravel	Echo	(the	JavaScript	Side)-Subscribing	to
notifications	with	Echo

listening	for	events,	Using	Echo	for	basic	event	broadcasting

presence	channels,	Presence	channels

private	channels,	Private	channels	and	basic	authentication

service	provider	configuration,	The	broadcast	service	provider

subscribing	to	channels,	Using	Echo	for	basic	event	broadcasting

subscribing	to	notifications,	Subscribing	to	notifications	with	Echo

edit()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

Elixir	build	tool,	Elixir-Elixir	extensions,	Glossary

directory	structure	for,	Elixir	Folder	Structure

documentation	for,	What	Does	Elixir	Provide?

extensions	for,	Elixir	extensions-Elixir	extensions

JavaScript,	concatenating,	Concatenating	JavaScript

JavaScript,	processing,	Processing	JavaScript

multiple	files,	processing,	Passing	multiple	files

preprocessorless	CSS,	Preprocessorless	CSS

production	mode,	The	--production	flag

running,	Running	Elixir

source	maps,	generating,	Source	maps

tests,	running,	Tests

versioning,	Versioning-Versioning

versions	of,	Elixir

elixir()	helper,	Versioning,	URLs

Eloquent,	Pagination,	Introduction	to	Eloquent-Eloquent	Events,	Glossary

accessors,	Accessors,	Hiding	attributes	from	JSON,	Testing,	Glossary

aggregates,	Aggregates

attribute	casting,	Attribute	casting

collections	returned	by,	Eloquent	Collections-What	Eloquent	collections	add

customzing	route	key	for,	Implicit	Route	Model	Binding

date	mutators,	Date	mutators

deletes,	Deleting	with	Eloquent-Force-deleting	soft-deleted	entities

eager	loading,	Eager	loading-Eager	loading	only	the	count,	Glossary

events,	Eloquent	Events-Eloquent	Events

exceptions	thrown	by,	Get	one

fillable	or	guarded	properties,	Mass	assignment

filtering	API	results,	Filtering	Your	API	Results

full-text	search	for,	Full-Text	Search	with	Laravel	Scout-Manually	Trigger	Indexing
via	the	CLI

inserts,	Inserts-Inserts,	firstOrCreate()	and	firstOrNew()

JSON	results	for	APIs,	Controller	Organization	and	JSON	Returns

mass	assignment,	Eloquent	Model	Mass	Assignment,	Mass	assignment-Mass
assignment,	Glossary

migration,	creating	with	model,	Creating	and	Defining	Eloquent	Models

model,	creating,	Creating	and	Defining	Eloquent	Models-Timestamps

mutators,	Mutators-Mutators

pagination	for,	Paginating	Database	Results-Manually	Creating	Paginators,	Eloquent
Pagination-Eloquent	Pagination

primary	keys,	Primary	key

query	builder,	Pagination

relationships,	Eloquent	Relationships-Many	to	many	polymorphic

retrieving	data,	Retrieving	Data	with	Eloquent-Aggregates

scopes	(filters),	Scopes-Removing	global	scopes,	Glossary

serialization,	Eloquent	Serialization-Hiding	attributes	from	JSON

sorting	results,	Sorting	and	Filtering-Sorting	Your	API	Results

table	names,	Table	name

timestamps,	Creating	columns,	Timestamps,	Date	mutators,	Child	Records	Updating
Parent	Record	Timestamps-Eager	loading	only	the	count

transforming	results,	Transforming	Results-Writing	Your	Own	Transformer

updates,	Updates-Mass	assignment

user	input	from,	Eloquent	Model	Mass	Assignment

@else	directive,	Blade,	@if,	Blade	Checks

@elseif	directive,	Blade,	@if

email	notifications,	Email	notifications-Email	notifications

emailOutputTo()	method,	tasks,	Handling	Task	Output

EncryptCookies	middleware,	Cookies

encryption

disabling	for	cookies,	Cookies

generating	keys	for	application,	The	Grouped	Commands

generating	keys	for	OAuth	server,	Installing	Passport

manually	encrypting	cookies,	Cookies

of	session	data,	Sessions

@endcan	directive,	Blade	Checks

@endcannot	directive,	Blade	Checks

@endif	directive,	Blade,	@if

@endsection	directive,	Blade,	Defining	Sections	with	@section/@show	and	@yield,
@section	and	@endsection

ends_with()	helper,	The	String	Helpers	and	Pluralization,	Strings

@endunless	directive,	Blade,	@unless	and	@endunless

enum()	method,	Blueprint,	Creating	columns

env	command,	Artisan,	Basic	Artisan	Commands

.env	file,	The	Loose	Files,	Configuration

env()	helper,	Configuration,	Misc

.env.example	file,	The	Loose	Files

.env.test	file,	The	Testing	Environment

environment	variables,	Glossary

returning,	Misc

setting	for	tests,	The	Testing	Environment

environment()	method,	The	Testing	Environment

Envoyer,	Handling	Task	Output,	Glossary

equal	sign	(=),	in	Artisan	argument	definition,	Arguments,	required,	optional,	and/or
with	defaults

error	bags,	Message	Bags-Named	Error	Bags,	Testing	Message	and	Error	Bags

error()	method,	Output

errors	and	exceptions

from	Eloquent,	Get	one

from	HTTP,	Misc

from	jobs	in	queue,	handling,	Handling	Errors-Handling	failed	jobs

in	message	and	error	bags,	Message	Bags-Named	Error	Bags,	Testing	Message	and
Error	Bags

from	session,	testing	for,	JSON	and	Non-visit()	Application	Testing	Assertions,	Session

from	user	input,	displaying,	Displaying	Validation	Error	Messages

$errors	variable,	Message	Bags-Named	Error	Bags

ES6,	JavaScript,	Elixir

event	commands,	Artisan,	The	Grouped	Commands

Event	facade,	Firing	an	Event

event()	helper,	Firing	an	Event,	Misc

event-related	tests,	Jobs	and	Events

events,	Events-Event	subscribers,	Glossary

authentication,	Auth	Events

broadcasting	over	WebSockets	(see	WebSockets)

creating,	Firing	an	Event-Firing	an	Event

Eloquent,	Eloquent	Events-Eloquent	Events

firing,	Firing	an	Event-Firing	an	Event,	Misc

listeners	for,	creating,	Listening	for	an	Event-Listening	for	an	Event

Pub/Sub	pattern	used	by,	Events

subscribers	for,	Event	subscribers-Event	subscribers

ExampleTest.php	file,	Testing	Basics

except()	method,	Request,	$request->except()	and	$request->only(),	Basic	user	input

exceptions	(see	errors	and	exceptions)

exists()	method,	Request,	$request->has()	and	$request->exists(),	Basic	user	input

exists()	method,	Storage,	Using	the	Storage	Facade

expectsEvents()	method,	TestCase,	Jobs	and	Events

expectsJob()	method,	TestCase,	Jobs	and	Events

$expression	parameter,	Blade,	Parameters	in	Custom	Blade	Directives

extend()	method,	Storage,	Adding	Additional	Flysystem	Providers

@extends	directive,	Blade,	@extends

F

facades,	Facades	and	the	Container-How	Facades	Work,	Glossary

accessing	backing	class	of,	How	Facades	Work

creating,	How	Facades	Work

importing,	Getting	User	Input

importing	namespaces	for,	Facades	and	the	Container

injecting	backing	class	of,	How	Facades	Work

mocking,	Mocking	Facades

namespaces	for,	JSON	Input	(and	$request->json())

static	calls	using,	Route	Definitions

factory()	helper,	Creating	a	model	factory,	Using	a	model	factory,	Misc

failed()	method,	jobs,	Handling	failed	jobs

failing()	method,	Queue,	Handling	failed	jobs

Faker,	Testing,	Returning	fake	files

File	facade,	Using	the	Storage	Facade

file	responses,	File	responses

file()	method,	Faker,	Returning	fake	files

file()	method,	Request,	Uploaded	Files,	Files

file()	method,	Response,	Testing,	File	responses

files()	method,	Storage,	Using	the	Storage	Facade

filesystem	storage	(see	storage)

filesystems.php	file,	Configuring	File	Access,	Using	the	Storage	Facade

file_get_contents()	function,	Basic	File	Uploads	and	Manipulation

fillable	or	guarded	properties,	Mass	assignment

fillForm()	method,	TestCase,	Clicking	and	Forms

filter()	method,	collection,	A	Few	Methods

filtering	API	results,	Filtering	Your	API	Results

filters	(see	scopes	(filters),	Eloquent)

find()	method,	DB,	Ending/returning	methods

find()	method,	Eloquent,	Get	one

findOrFail()	method,	DB,	Ending/returning	methods

findOrFail()	method,	Eloquent,	Get	one

first()	method,	Blueprint,	Building	extra	properties	fluently

first()	method,	collection,	A	Few	Methods

first()	method,	DB,	Ending/returning	methods,	Ending/returning	methods

first()	method,	Eloquent,	Get	one

firstOrCreate()	method,	Eloquent,	firstOrCreate()	and	firstOrNew()

firstOrFail()	method,	DB,	Ending/returning	methods

firstOrFail()	method,	Eloquent,	Get	one

firstOrNew()	method,	Eloquent,	firstOrCreate()	and	firstOrNew()

flags,	Glossary

flash()	method,	Request,	Persistence

flash()	method,	Session,	Flash	Session	Storage

flashExcept()	method,	Request,	Persistence

flashOnly()	method,	Request,	Persistence

float()	method,	Blueprint,	Creating	columns

fluent	interface,	Query	Builder

fluent	methods,	Glossary

flush()	method,	Cache,	The	Methods	Available	on	Cache	Instances

flush()	method,	Request,	Persistence

flush()	method,	Session,	The	Methods	Available	on	Session	Instances

flushSession()	method,	TestCase,	Authentication	and	Sessions

Flysystem	package,	Local	and	Cloud	File	Managers,	Adding	Additional	Flysystem
Providers,	Glossary

followRedirects()	method,	TestCase,	“Visiting”	Routes

fonts	used	in	this	book,	How	This	Book	Is	Structured

forceDelete()	method,	Eloquent,	Force-deleting	soft-deleted	entities

forever()	method,	Cache,	The	Methods	Available	on	Cache	Instances

Forge,	Basic	Queue	Configuration,	Glossary

forget()	method,	Cache,	The	Methods	Available	on	Cache	Instances

forget()	method,	Session,	The	Methods	Available	on	Session	Instances

ForgotPasswordController,	ForgotPasswordController

form	encoding,	Uploaded	Files

form	method	spoofing,	Form	Method	Spoofing-HTTP	Method	Spoofing	in	HTML	Forms

form	requests,	Form	Requests-Using	a	Form	Request,	Passing	Parameters	to	Middleware

form-related	tests,	Clicking	and	Forms-Clicking	and	Forms

forUser()	method,	Gate,	The	Gate	Facade	(and	Injecting	Gate),	Checking	on	the	User
Instance

FQCN	(fully-qualified	class	name),	Glossary

Fractal	package,	Transforming	Results

frameworks,	Why	Laravel?-Laravel	5

(see	also	Laravel)

from()	method,	mailable,	Methods	Available	in	build()

full-text	search,	Full-Text	Search	with	Laravel	Scout-Manually	Trigger	Indexing	via	the
CLI

fully-qualified	class	name	(FQCN),	Glossary

functional	tests	(see	application	tests)

functions	(see	helper	functions)

G

Gate	facade,	Authorization	(ACL)	and	Roles,	The	Gate	Facade	(and	Injecting	Gate)

GET	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

for	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

routes	based	on,	Route	Verbs

get()	method,	Cache,	Accessing	the	Cache,	The	Methods	Available	on	Cache	Instances

get()	method,	Cookie,	The	Cookie	facade

get()	method,	DB,	Chaining	with	the	Query	Builder,	Ending/returning	methods

get()	method,	Eloquent,	Retrieving	Data	with	Eloquent,	Get	many

get()	method,	ParameterBag,	Basic	user	input

get()	method,	Route,	Route	Names

get()	method,	Session,	The	Methods	Available	on	Session	Instances

get()	method,	Storage,	Using	the	Storage	Facade

get()	method,	TestCase,	“Visiting”	Routes

getFacadeAccessor()	method,	How	Facades	Work

getRealPath()	method,	SplFileInfo,	Basic	File	Uploads	and	Manipulation

.gitignore	file,	The	Loose	Files

give()	method,	Contextual	Binding

global	scopes,	Global	scopes-Removing	global	scopes

grant	types,	Passport,	Passport’s	Available	Grant	Types-Tokens	from	Laravel	session
authentication	(synchronizer	tokens)

groupBy()	method,	collection,	A	Few	Methods

groupBy()	method,	DB,	Modifying	methods

guard()	method,	Using	Other	Guards	Without	Changing	the	Default

guarded	or	fillable	properties,	Mass	assignment

guards,	Guards-Custom	User	Providers	for	Nonrelational	Databases

adding,	Adding	a	New	Guard

default,	changing,	Changing	the	Default	Guard

driver	for,	Guards,	Adding	a	New	Guard

provider	for,	Guards-Custom	User	Providers	for	Nonrelational	Databases

selecting,	Using	Other	Guards	Without	Changing	the	Default

guest	middleware,	Auth	Middleware

guest()	method,	Using	the	auth()	Global	Helper	and	the	Auth	Facade

guest()	method,	redirects,	Other	Redirect	Methods

Gulp	build	tool,	Elixir,	Running	Elixir,	Glossary

gulp	command,	Running	Elixir

gulp	tdd	command,	Tests

gulp	watch	command,	Testing	with	Elixir

gulpfile.js	file,	The	Loose	Files,	Elixir

H

handle()	method,	events,	Listening	for	an	Event

handle()	method,	jobs,	Creating	a	job

handle()	method,	requests,	Laravel’s	kernel,	Creating	Custom	Middleware-Binding
Middleware,	Passing	Parameters	to	Middleware

has()	method,	Cache,	The	Methods	Available	on	Cache	Instances

has()	method,	Cookie,	The	Cookie	facade

has()	method,	Eloquent,	Selecting	only	records	that	have	a	related	item

has()	method,	ParameterBag,	Basic	user	input

has()	method,	Request,	$request->has()	and	$request->exists(),	Basic	user	input

has()	method,	Session,	The	Methods	Available	on	Session	Instances

HasApiTokens	trait,	Installing	Passport

hasCookie()	method,	Request,	Persistence

hasFile()	method,	Request,	Uploaded	Files,	Files

hasMany()	method,	Eloquent,	One	to	many

hasManyThrough()	method,	Eloquent,	Has	many	through

hasOne()	method,	Eloquent,	One	to	one

having()	method,	DB,	Modifying	methods

havingRaw()	method,	DB,	Modifying	methods

HEAD	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

header()	method,	Request,	User	and	request	state,	Reading	Request	Headers	in	Laravel

header()	method,	Response,	Sending	Response	Headers	in	Laravel

headers	(see	request	headers;	response	headers)

help	command,	Artisan,	Basic	Artisan	Commands

helper	functions,	Helpers-Misc,	Glossary

(see	also	specific	helpers)

for	arrays,	Arrays-Arrays

for	paths,	Application	Paths

for	strings,	Strings-Strings

for	URLs,	URLs-URLs

here()	method,	Echo,	Presence	channels

$hidden	property,	Transforming	Results

home()	method,	redirects,	Other	Redirect	Methods

Homestead,	Laravel	Homestead-Connecting	to	Homestead	databases	from	desktop
applications,	Glossary

configuring,	Configuring	Homestead-Configuring	Homestead

databases,	connecting	to,	Connecting	to	Homestead	databases	from	desktop
applications

databases,	creating,	Creating	databases	in	Homestead

dependencies	for,	Installing	Homestead’s	dependencies

initializing,	Provisioning	Homestead

installing,	Installing	Homestead

setting	up,	Setting	up	Homestead-Configuring	Homestead

starting	and	stopping,	Using	Homestead	day-to-day

tools	provided	with,	Setting	up	Homestead

Homestead.yaml	file,	Configuring	Homestead-Configuring	Homestead

.htaccess	file,	Laravel’s	Request	Lifecycle

htmlentities()	function,	Echoing	Data,	Strings

HTTP	methods	(verbs),	Route	Definitions,	The	methods	of	Laravel’s	resource
controllers,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML	Forms

HTTP	redirects,	Redirects-redirect()->with(),	Misc,	Misc

HTTP	requests,	Aborting	the	Request,	Laravel’s	Request	Lifecycle-Bootstrapping	the
Application,	The	Request	Object-Persistence

(see	also	Request	object)

HTTP	responses,	Custom	Responses,	The	Response	Object-Custom	response	macros,
Misc

(see	also	Response	object)

HttpFoundation	classes,	The	Request	Object

hyphen,	double	(-	-),	preceding	Artisan	command	options,	Options,	required	values,	value
defaults,	and	shortcuts

I

icons	used	in	this	book,	Conventions	Used	in	This	Book

id()	method,	Using	the	auth()	Global	Helper	and	the	Auth	Facade

@if	directive,	Blade,	@if

Illuminate	namespace,	Glossary

implicit	route	model	binding,	Implicit	Route	Model	Binding

@include	directive,	Blade,	@include

increment()	method,	Cache,	The	Methods	Available	on	Cache	Instances

increment()	method,	DB,	Updates

increments()	method,	Blueprint,	Creating	columns

index()	method,	Blueprint,	Building	extra	properties	fluently

index()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

index.php	file,	Bootstrapping	the	Application-Service	Providers

info()	method,	Output

@inject	directive,	Blade,	Blade	Service	Injection

Input	facade,	Getting	User	Input

input()	method,	Request,	$request->input(),	JSON	Input	(and	$request->json()),	Basic
user	input

inRandomOrder()	method,	DB,	Modifying	methods

insert()	method,	DB,	Raw	inserts,	Inserts

insertGetId()	method,	DB,	Inserts

installer	tool,	Installing	Laravel	with	the	Laravel	Installer	Tool,	Up	and	Running

instances,	binding	to,	Binding	to	Singletons,	Aliases,	and	Instances

integer()	method,	Blueprint,	Creating	columns

integration	tests,	Testing,	Glossary

intended()	method,	redirects,	Other	Redirect	Methods

InteractsWithQueue	trait,	Creating	a	job

interfaces	(contracts),	The	User	Model	and	Migration,	Binding	a	Concrete	Instance	to
an	Interface,	Glossary

Intervention	library,	Basic	File	Uploads	and	Manipulation

IoC	(inversion	of	control),	A	Quick	Introduction	to	Dependency	Injection,	Binding	a
Concrete	Instance	to	an	Interface,	Testing,	Glossary

IoC	container	(see	container)

ip()	method,	Request,	User	and	request	state

is()	method,	Request,	User	and	request	state

isEmpty()	method,	collection,	A	Few	Methods

isJson()	method,	Request,	User	and	request	state

isValid()	method,	File,	Uploaded	Files

J

JavaScript

concatenating,	in	Elixir,	Concatenating	JavaScript

escaping	backslashes	in,	Receiving	the	Message

processing,	in	Elixir,	Processing	JavaScript

JavaScript	ES6,	Elixir

JavaScript	Object	Notation	(see	JSON)

Job	class,	Glossary

job-related	tests,	Jobs	and	Events

jobs,	Queues,	Queued	Jobs-Customizing	the	delay

(see	also	queues)

creating,	Creating	a	job-Creating	a	job

deleting,	Handling	failed	jobs

dispatching,	Misc

failed,	handling,	Handling	Errors-Handling	failed	jobs

number	of	tries	for,	Limiting	the	number	of	tries

pushing	onto	queue,	Pushing	a	job	onto	a	queue-Customizing	the	delay

releasing	back	to	queue,	Controlling	the	Queue

retrying,	Handling	failed	jobs

join()	method,	DB,	Joins

join()	method,	Echo,	Presence	channels

JSON	(JavaScript	Object	Notation),	Glossary

API	pattern	for,	The	Basics	of	REST-Like	JSON	APIs

API	spec	for,	Sorting	and	Filtering

assertions,	JSON	and	Non-visit()	Application	Testing	Assertions-JSON	and	Non-visit()

Application	Testing	Assertions

operations,	JSON	operations,	Eloquent	Serialization-Hiding	attributes	from	JSON

responses,	JSON	responses

testing,	Testing	Basics

JSON	Web	Token	(JWT),	Tokens	from	Laravel	session	authentication	(synchronizer
tokens),	Glossary

json()	method,	Blueprint,	Creating	columns

json()	method,	Request,	JSON	Input	(and	$request->json()),	Basic	user	input

json()	method,	Response,	response()->json()	and	->jsonp(),	JSON	responses

json()	method,	TestCase,	“Visiting”	Routes

jsonb()	method,	Blueprint,	Creating	columns

jsonp()	method,	Response,	response()->json()	and	->jsonp()

JWT	(JSON	Web	Token),	Tokens	from	Laravel	session	authentication	(synchronizer
tokens),	Glossary

K

keep()	method,	Session,	Flash	Session	Storage

kernel,	Laravel’s	kernel

Kernel.php	file,	Binding	global	middleware

key	commands,	Artisan,	The	Grouped	Commands

keys()	method,	ParameterBag,	Basic	user	input

L

Lambo	package,	Up	and	Running

Laravel

advantages	of,	What’s	So	Special	About	Laravel?-How	Laravel	Achieves	Developer
Happiness

community	for,	The	Laravel	Community-The	Laravel	Community

documentation	for,	What	This	Book	Is	About

installer,	Creating	a	New	Laravel	Project,	Up	and	Running

local	development	environments	for,	Local	Development	Environments-Connecting	to
Homestead	databases	from	desktop	applications

PHP	versions	and	extensions	for,	System	Requirements

starting,	Up	and	Running

system	requirements,	Who	This	Book	Is	For,	System	Requirements-Composer

versions	of	(see	versions	of	Laravel)

Laravel	Echo	(see	Echo)

Laravel	Envoyer,	Handling	Task	Output

Laravel	Forge	(see	Forge)

laravel	new	command	(Laravel	installer),	Installing	Laravel	with	the	Laravel	Installer
Tool,	Up	and	Running

laravel.log	file,	The	log	driver

last()	method,	collection,	A	Few	Methods

lastModified()	method,	Storage,	Using	the	Storage	Facade

later()	method,	Mail,	later()

latest()	method,	DB,	Modifying	methods

lazy	loading,	Eager	loading,	Lazy	eager	loading

leftJoin()	method,	DB,	Joins

LengthAwarePaginator	class,	Manually	Creating	Paginators

lifecycle	of	application,	Laravel’s	Request	Lifecycle-Service	Providers

line()	method,	Output

links()	method,	Paginating	Database	Results

list	command,	Artisan,	An	Introduction	to	Artisan

listen()	method,	Echo,	Using	Echo	for	basic	event	broadcasting

listeners,	for	events,	Listening	for	an	Event-Listening	for	an	Event

local	development	environments,	Local	Development	Environments-Connecting	to
Homestead	databases	from	desktop	applications

local	disk,	Configuring	File	Access

local	scopes,	Local	scopes

localization,	Localization-Pluralization	in	localization,	Translation	and	Localization

Log	facade,	Facades	and	the	Container-How	Facades	Work

logging,	Facades	and	the	Container-How	Facades	Work,	The	log	driver

login()	method,	AuthenticatesUsers	trait,	Manually	Authenticating	Users

LoginController,	LoginController-ThrottlesLogins	trait

loginUsingId()	method,	Manually	Authenticating	Users

longText()	method,	Blueprint,	Creating	columns

$loop	variable,	@forelse

loops	(Blade),	Loops-@forelse,	@each

M

mail,	Mail-Universal	to

attachments,	Methods	Available	in	build()-Queues

capturing,	Mailtrap.io

classic	mail,	“Classic”	Mail

configuring,	Mail

creating,	Basic	“Mailable”	Mail	Usage-Basic	“Mailable”	Mail	Usage

customizing,	Methods	Available	in	build()

drivers	supported,	Mail

HTML	format,	Mail	Templates

inline	images,	Attachments	and	Inline	Images

logging,	The	log	driver

mailable	mail,	Basic	“Mailable”	Mail	Usage-Basic	“Mailable”	Mail	Usage

manually	modifying,	Methods	Available	in	build()

plain	text	format,	Mail	Templates

queues	for,	Queues

sending,	Basic	“Mailable”	Mail	Usage

templates,	Mail	Templates

testing,	Local	Development,	Mail

universal	to,	Universal	to

Mail	facade,	“Classic”	Mail

mail.php	file,	Mail,	Universal	to

MailThief,	Mail

Mailtrap,	Mailtrap.io

make	commands,	Artisan,	The	Grouped	Commands

make()	method,	app,	The	app()	Global	Helper

make()	method,	Cookie,	The	Cookie	facade,	The	cookie()	global	helper

make()	method,	model	factories,	Using	a	model	factory

make()	method,	Response,	response()->make()

make:auth	command,	Artisan,	The	Auth	Scaffold,	The	Vue	components

make:controller	command,	Artisan,	Controllers,	Controllers,	Controllers,	Resource
Controllers

make:event	command,	Artisan,	Firing	an	Event

make:job	command,	Artisan,	Creating	a	job

make:mail	command,	Artisan,	Basic	“Mailable”	Mail	Usage

make:middleware	command,	Artisan,	Creating	Custom	Middleware

make:migration	command,	Artisan,	Creating	a	migration

make:model	command,	Artisan,	Creating	and	Defining	Eloquent	Models,	Controller
Organization	and	JSON	Returns

make:notification	command,	Artisan,	Notifications

make:policy	command,	Artisan,	Generating	policies

make:request	command,	Artisan,	Creating	a	Form	Request

make:seeder	Artisan	command,	Creating	a	Seeder

makeVisible()	method,	Eloquent,	Hiding	attributes	from	JSON

many-to-many	relationships,	Eloquent	Relationships,	Many	to	many-Getting	data	from
the	pivot	table

map()	method,	collection,	A	Few	Methods

mapApiRoutes()	method,	RouteServiceProvider,	Using	middleware	groups

mapWebRoutes()	method,	RouteServiceProvider,	Using	middleware	groups

mass	assignment,	Eloquent	Model	Mass	Assignment,	Mass	assignment-Mass	assignment,
Glossary

max()	method,	DB,	Ending/returning	methods

Mbstring	PHP	extension,	System	Requirements

mediumInteger()	method,	Blueprint,	Creating	columns

mediumText()	method,	Blueprint,	Creating	columns

Memcached	data	store,	Other	Database	Configuration	Options,	Glossary

message	bags,	Message	Bags-Named	Error	Bags,	Testing	Message	and	Error	Bags

MessageBag	class,	Message	Bags-Named	Error	Bags

method	injection,	A	Quick	Introduction	to	Dependency	Injection,	Method	Injection

method()	method,	Request,	User	and	request	state

methods,	Route	Names

(see	also	specific	methods)

chaining,	Route	Names,	Middleware

fluent,	Glossary

HTTP	methods	(verbs),	Route	Definitions,	The	methods	of	Laravel’s	resource
controllers,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

middleware,	Route	Definitions,	Laravel	and	Middleware-Passing	Parameters	to
Middleware,	Glossary

binding,	Binding	Middleware-Using	middleware	groups

custom,	creating,	Creating	Custom	Middleware-Binding	Middleware

for	authentication,	Auth	Middleware

for	authorization,	The	Authorize	Middleware

groups,	Using	middleware	groups

passing	parameters	to,	Passing	Parameters	to	Middleware

route	groups	for,	Middleware-Middleware

middleware()	method,	Middleware,	Using	middleware	groups

migrate	commands,	Artisan,	Basic	Artisan	Commands,	The	Grouped	Commands,
Running	Migrations,	Seeding,	Controller	Organization	and	JSON	Returns

migrations,	Migrations-Running	Migrations,	Glossary

columns,	creating,	Creating	columns-Creating	columns

columns,	modifying,	Modifying	columns-Indexes	and	foreign	keys

creating	with	Eloquent	model,	Creating	and	Defining	Eloquent	Models

defining,	Defining	Migrations-Adding	and	removing	foreign	keys

field	properties,	setting,	Building	extra	properties	fluently

foreign	keys,	adding,	Adding	and	removing	foreign	keys

foreign	keys,	dropping,	Adding	and	removing	foreign	keys

indexes,	adding,	Indexes	and	foreign	keys

indexes,	removing,	Removing	indexes

running,	Running	Migrations

tables,	creating,	Creating	tables

tables,	dropping,	Dropping	tables

types	of,	Defining	Migrations

min()	method,	DB,	Ending/returning	methods

mix.browserify()	method,	Processing	JavaScript

mix.phpSpec()	method,	Tests,	Testing	with	Elixir

mix.phpUnit()	method,	Tests,	Testing	with	Elixir

mix.rollup()	method,	Processing	JavaScript

mix.sass()	method,	Elixir,	Passing	multiple	files

mix.scripts()	method,	Concatenating	JavaScript

mix.styles()	method,	Preprocessorless	CSS

mix.version()	method,	Versioning

mix.webpack()	method,	Processing	JavaScript

Mockery	library,	Testing,	Mocking-Mocking	Facades,	Glossary

model	factory,	Model	Factories-Defining	and	accessing	multiple	model	factory	types,
Glossary

Model-View-Controller	(MVC)	pattern	(see	controllers)	(see	views)

modelKeys()	method,	collection,	What	Eloquent	collections	add

morphedByMany()	method,	Eloquent,	Many	to	many	polymorphic

morphs()	method,	Blueprint,	Creating	columns

morphsTo()	method,	Eloquent,	Polymorphic

morphToMany()	method,	Eloquent,	Many	to	many	polymorphic

move()	method,	Storage,	Using	the	Storage	Facade

multitenancy,	Example:	Using	Custom	Blade	Directives	for	a	Multitenant	App-Example:
Using	Custom	Blade	Directives	for	a	Multitenant	App,	Glossary

mutators,	Mutators-Mutators,	Glossary

MVC	(Model-View-Controller)	pattern	(see	controllers;	views)

N

name	prefixes,	route	groups	for,	Name	Prefixes

name()	method,	Route	Names

namespace	prefixes,	route	groups	for,	Namespace	Prefixes

namespaces

for	contracts,	The	User	Model	and	Migration

for	controllers,	Controllers

default	App	namespace,	replacing,	The	Grouped	Commands

escaping	backslashes	in	JavaScript,	Receiving	the	Message

for	facades,	Getting	User	Input,	JSON	Input	(and	$request->json()),	Facades	and	the
Container

in	FQCN	(fully-qualified	class	name),	Glossary

Illuminate,	Bootstrapping	the	Application,	Glossary

make	namespace,	for	Artisan,	Controllers,	Writing	Custom	Artisan	Commands

needs()	method,	Contextual	Binding

Nexmo,	SMS	notifications

Nginx	web	server,	Glossary

Node.js,	installing,	Running	Elixir

Notifiable	trait,	Sending	Notifications

Notification	facade,	Sending	notifications	with	the	Notification	facade

notifications,	Notifications-Slack	notifications

broadcast	notifications,	Broadcast	notifications

channels	for,	Notifications,	Defining	the	via()	Method	for	Your	Notifiables

creating,	Notifications-Defining	the	via()	Method	for	Your	Notifiables

database	notifications,	Database	notifications

drivers	supported,	Out-of-the-Box	Notification	Types

email	notifications,	Email	notifications-Email	notifications

queueing,	Queueing	Notifications

recipients	of,	Notifications

sending,	Sending	Notifications

Slack	notifications,	Slack	notifications

SMS	notifications,	SMS	notifications

subscribing	to,	Subscribing	to	notifications	with	Echo

testing,	Notifications

notifications	commands,	Artisan,	The	Grouped	Commands

notify()	method,	Notifiable,	Sending	notifications	using	the	Notifiable	trait

npm	install	command,	Bringing	Echo	into	your	project

nullable()	method,	Blueprint,	Building	extra	properties	fluently

nullableTimestamps()	method,	Blueprint,	Creating	columns

O

OAuth	2.0,	Overriding	policies,	A	Brief	Introduction	to	OAuth	2.0

(see	also	Passport	package)

object-relational	mapper	(see	ORM)

Observer	pattern,	events	for,	Glossary

old()	helper,	redirect()->with(),	Misc

old()	method,	Request,	Persistence

oldest()	method,	DB,	Modifying	methods

onConnection()	method,	jobs,	Customizing	the	connection

onConnection()	method,	mailable,	Specifying	the	queue	or	connection

one-to-many	relationships,	Eloquent	Relationships,	One	to	many-One	to	many

one-to-one	relationships,	One	to	one-One	to	one

online	resources

Elixir	documentation,	What	Does	Elixir	Provide?

facades	documentation,	How	Facades	Work

for	this	book,	How	to	Contact	Us

Homestead	documentation,	Installing	Homestead

Laravel	documentation,	What	This	Book	Is	About

SSH	keys,	creating,	Configuring	Homestead

Valet	documentation,	Laravel	Valet

only()	method,	Request,	$request->except()	and	$request->only(),	Eloquent	Model	Mass
Assignment,	Mass	assignment,	Basic	user	input

onlyTrashed()	method,	Eloquent,	Querying	with	soft	deletes

onQueue()	method,	events,	Broadcasting	an	Event

onQueue()	method,	jobs,	Customizing	the	queue

onQueue()	method,	mailable,	Specifying	the	queue	or	connection

onUserSubscription()	method,	events,	Event	subscribers

OpenSSL	PHP	extension,	System	Requirements

operating	system	requirements,	Who	This	Book	Is	For,	System	Requirements

optimize	command,	Artisan,	Basic	Artisan	Commands,	Options

option()	method,	option()

options	(Artisan),	Glossary

OPTIONS	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

or	helper,	Blade,	or

orderBy()	method,	DB,	Modifying	methods

orderBy()	method,	Eloquent,	Retrieving	Data	with	Eloquent,	Sorting	Your	API	Results

ORM	(object-relational	mapper),	Pagination,	Glossary

(see	also	Eloquent)

orWhere()	method,	DB,	Constraining	methods-Constraining	methods

P

package.json	file,	The	Loose	Files

paginate()	method,	Paginating	Database	Results,	Eloquent	Pagination-Eloquent
Pagination

pagination,	Pagination-Manually	Creating	Paginators

Paginator	class,	Manually	Creating	Paginators

parameter	binding,	PDO,	Parameter	bindings	and	named	bindings

ParameterBag	class,	Basic	user	input

@parent	directive,	Blade,	@parent

Passport	package,	Overriding	policies,	API	Authentication	with	Laravel	Passport-
Passport	Scopes,	Glossary

grant	types	for,	Passport’s	Available	Grant	Types-Tokens	from	Laravel	session
authentication	(synchronizer	tokens)

installing,	Installing	Passport-Installing	Passport

routes	for,	Installing	Passport,	Passport’s	API,	The	routes

scopes,	Passport	Scopes-Passport	Scopes

Vue	components,	The	Vue	components-The	Vue	components

PassportServiceProvider,	Installing	Passport

password	grant,	Passport,	Password	grant-Password	grant

PATCH	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

for	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

routes	based	on,	Route	Verbs

patch()	method,	TestCase,	“Visiting”	Routes

path	prefixes,	route	groups	for,	Path	Prefixes

path()	method,	Request,	User	and	request	state

paths

for	facades,	JSON	Input	(and	$request->json())

helpers	for,	Application	Paths

in	FQCN	(fully-qualified	class	name),	Glossary

PDO	parameter	binding,	Parameter	bindings	and	named	bindings

PDO	PHP	extension,	System	Requirements

period	(.),	dot	notation,	Glossary

personal	access	client,	Personal	access	tokens

personal	access	tokens,	Passport,	Personal	access	tokens

PHP

versions	and	extensions	for,	System	Requirements

views	rendered	with,	Views

PHPSpec	testing	framework,	Glossary

PHPUnit	testing	framework,	Testing,	Testing,	Glossary

phpunit.xml	file,	The	Loose	Files,	The	Testing	Environment

pingBefore()	method,	tasks,	Handling	Task	Output

pivot	table,	Many	to	many-Getting	data	from	the	pivot	table

pjax()	method,	Request,	User	and	request	state

pluck()	method,	collection,	A	Few	Methods

pluralization,	The	String	Helpers	and	Pluralization,	Pluralization	in	localization

policies	for	authorization,	Policies-Overriding	policies

polymorphic	relationships,	Eloquent	Relationships,	Polymorphic-Many	to	many
polymorphic,	Glossary

POST	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML
Forms

for	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

getting	user	input	from,	Getting	User	Input

routes	based	on,	Route	Verbs

post()	method,	TestCase,	“Visiting”	Routes

prepend()	method,	Storage,	Using	the	Storage	Facade

preprocessors,	Glossary

press()	method,	TestCase,	Clicking	and	Forms

primary	keys,	Glossary

primary()	method,	Blueprint,	Building	extra	properties	fluently

priority()	method,	mailable,	Methods	Available	in	build()

private()	method,	Echo,	Private	channels	and	basic	authentication

progress	bars,	Progress	bars

progressAdvance()	method,	Progress	bars

progressFinish()	method,	Progress	bars

progressStart()	method,	Progress	bars

projects

configuring,	Configuration

creating,	Creating	a	New	Laravel	Project-Installing	Laravel	with	Composer’s	create-
project	Feature

directory	structure	for,	Laravel’s	Directory	Structure-The	Loose	Files

provides()	method,	service	providers,	Service	Providers

Pub/Sub	pattern,	Events,	Broadcasting	Events	over	WebSockets,	and	Laravel	Echo,
Glossary

public	disk,	Configuring	File	Access

public	folder,	The	Folders

pull()	method,	Cache,	The	Methods	Available	on	Cache	Instances

pull()	method,	Session,	The	Methods	Available	on	Session	Instances

push()	method,	Session,	The	Methods	Available	on	Session	Instances

Pusher,	Configuration	and	Setup,	Receiving	the	Message-Binding	authorization
definitions	for	WebSocket	channels

PUT	method,	An	Introduction	to	HTTP	Verbs-HTTP	Method	Spoofing	in	HTML	Forms

for	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

routes	based	on,	Route	Verbs

put()	method,	Cache,	The	Methods	Available	on	Cache	Instances

put()	method,	Session,	The	Methods	Available	on	Session	Instances

put()	method,	Storage,	Using	the	Storage	Facade,	Basic	File	Uploads	and	Manipulation

put()	method,	TestCase,	“Visiting”	Routes

putFile()	method,	Storage,	Using	the	Storage	Facade

Q

query	builder,	Query	Builder-Transactions

(see	also	Eloquent)

aggregates,	Ending/returning	methods

chaining	methods	with,	Chaining	with	the	Query	Builder-JSON	operations

constraining	queries,	Constraining	methods-Constraining	methods

database	types	supported,	Query	Builder

DB	facade	for,	Basic	Usage	of	the	DB	Facade

deletes,	Deletes

inserts,	Inserts

joins,	Joins

JSON	operations,	JSON	operations

modifying	queries,	Modifying	methods-Modifying	methods

multiple	query	results,	format	for,	Raw	selects

pagination	for,	Paginating	Database	Results-Manually	Creating	Paginators,	Eloquent
Pagination

parameter	binding,	Parameter	bindings	and	named	bindings

raw	SQL	queries,	Raw	SQL-Raw	deletes,	Writing	raw	queries	inside	query	builder
methods	with	DB::raw

relationships	as,	Using	relationships	as	query	builders

returning	results,	Ending/returning	methods-Ending/returning	methods

transactions,	Transactions

unions,	Unions

updates,	Updates

question	mark	(?)

following	optional	Artisan	command	arguments,	Arguments,	required,	optional,
and/or	with	defaults

following	optional	parameters,	Route	Parameters

query	parameters,	Parameter	bindings	and	named	bindings

question()	method,	Output

queue	commands,	Artisan,	The	Grouped	Commands

queue()	method,	Cookie,	The	Cookie	facade

queue()	method,	Mail,	queue()

queue.php	file,	Basic	Queue	Configuration

queue:failed	command,	Artisan,	Handling	failed	jobs

queue:failed-table	command,	Artisan,	Handling	failed	jobs

queue:flush	command,	Artisan,	Handling	failed	jobs

queue:forget	command,	Artisan,	Handling	failed	jobs

queue:listen	command,	Artisan,	Limiting	the	number	of	tries

queue:retry	all	command,	Artisan,	Handling	failed	jobs

queue:retry	command,	Artisan,	Handling	failed	jobs

queue:work	command,	Artisan,	Running	a	Queue	Worker,	Limiting	the	number	of	tries

Queueable	trait,	Creating	a	job

queues,	Queues-Queues	Supporting	Other	Functions,	Glossary

for	Artisan	commands,	The	Grouped	Commands,	Queues	Supporting	Other	Functions

beanstalkd	for,	Glossary

benefits	of,	Why	Queues?

configuring,	Basic	Queue	Configuration

creating	jobs	in,	Creating	a	job-Creating	a	job

deleting	jobs	in,	Handling	failed	jobs

dispatching	jobs	in,	Misc

errors	with,	handling,	Handling	Errors-Handling	failed	jobs

for	jobs,	Queued	Jobs

for	mail,	Queues,	Queues	Supporting	Other	Functions

number	of	tries	for	jobs,	Limiting	the	number	of	tries

providers	and	drivers	for,	Queues

pushing	jobs	onto,	Pushing	a	job	onto	a	queue-Customizing	the	delay

releasing	jobs	back	to,	Controlling	the	Queue

retrying	jobs,	Handling	failed	jobs

workers,	Running	a	Queue	Worker,	Configuration	and	Setup

R

raw()	method,	DB,	Writing	raw	queries	inside	query	builder	methods	with	DB::raw

read-evaluate-print-loop	(REPL)	(see	Tinker)

readme.md	file,	The	Loose	Files

Redirect	facade,	Redirects

redirect()	helper,	Redirects-redirect()->with(),	Redirect	responses,	Misc

redirectPath()	method,	RegistersUsers	trait

redirects,	Redirects-redirect()->with()

Redis,	Other	Database	Configuration	Options,	Receiving	the	Message,	Receiving	the
Message,	Glossary

reduce()	method,	collection,	A	Few	Methods

reflash()	method,	Session,	Flash	Session	Storage

refresh()	method,	redirects,	Other	Redirect	Methods

regenerate()	method,	Session,	The	Methods	Available	on	Session	Instances

register()	method,	RegisterUsers,	RegistersUsers	trait

register()	method,	service	providers,	Service	Providers,	Binding	to	a	Closure,	Service

Providers

RegisterController,	RegisterController-RegistersUsers	trait

RegistersUsers	trait,	RegistersUsers	trait

regular	expressions

passing	to	str_is(),	Strings

route	constraints	using,	Route	Parameters

reject()	method,	collection,	A	Few	Methods

relationships,	Eloquent	Relationships-Many	to	many	polymorphic

as	query	builders,	Using	relationships	as	query	builders

eager	loading,	Eager	loading-Eager	loading	only	the	count,	Glossary

inserting	related	items,	One	to	one

lazy	loading,	Eager	loading,	Lazy	eager	loading

serialization	of,	Hiding	attributes	from	JSON

release()	method,	jobs,	Controlling	the	Queue

remember	me	access	token,	“Remember	Me”

remember()	method,	Cache,	The	Methods	Available	on	Cache	Instances

rememberForever()	method,	Cache,	The	Methods	Available	on	Cache	Instances

rememberToken()	method,	Blueprint,	Creating	columns

render()	method,	pagination,	Paginating	Database	Results

REPL	(read-evaluate-print-loop)	(see	Tinker)

Representational	State	Transfer	(REST),	The	Basics	of	REST-Like	JSON	APIs-The
Basics	of	REST-Like	JSON	APIs,	Glossary

Request	facade,	Injecting	a	Request	Object

request	headers,	Reading	and	Sending	Headers,	Reading	Request	Headers	in	Laravel

Request	object,	Injecting	a	Request	Object-JSON	Input	(and	$request->json()),	The
Request	Object-Persistence

accessing,	Getting	a	Request	Object	in	Laravel-Files

array	input,	accessing,	Array	Input

capturing	directly,	The	Request	Object

file	handling	methods,	Files

form	requests,	Passing	Parameters	to	Middleware

headers	for,	Reading	and	Sending	Headers,	Reading	Request	Headers	in	Laravel

JSON	input,	accessing,	JSON	Input	(and	$request->json())

lifecycle	of,	Laravel’s	Request	Lifecycle-Service	Providers

persistence	of,	for	session	interaction,	Persistence

reading	cookies	from,	Reading	cookies	from	request	objects

testing,	Testing-Testing

typehinting	in	constructors,	Injecting	Dependencies	into	Controllers,	Getting	a
Request	Object	in	Laravel-Getting	a	Request	Object	in	Laravel

user	and	request	state	methods,	User	and	request	state

user	input	methods,	Basic	user	input-User	and	request	state

request()	helper,	Injecting	a	Request	Object,	JSON	Input	(and	$request->json()),
Getting	a	Request	Object	in	Laravel

reset()	method,	ResetPasswordController

resetPassword()	method,	ResetPasswordController

ResetPasswordController,	ResetPasswordController

resource	controller	binding,	Binding	a	resource	controller

resource	controllers,	Resource	Controllers-Binding	a	resource	controller,	Controller
Organization	and	JSON	Returns-Controller	Organization	and	JSON	Returns

resources	folder,	The	Folders,	Elixir	Folder	Structure

resources,	API,	The	Basics	of	REST-Like	JSON	APIs,	Nesting	and	Relationships-Nesting
and	Relationships

resources,	online	(see	online	resources)

response	headers,	Reading	and	Sending	Headers

Response	object,	The	Response	Object-Custom	response	macros

creating,	Using	and	Creating	Response	Objects	in	Controllers-Adding	cookies

custom,	Custom	Responses

custom	response	macros,	Custom	response	macros

download	responses,	Download	responses

file	responses,	File	responses

headers	for,	Reading	and	Sending	Headers

JSON	responses,	JSON	responses

lifecycle	of,	Laravel’s	Request	Lifecycle-Service	Providers

redirect	responses,	Redirect	responses-Custom	response	macros

setting	cookies	on,	Setting	cookies	on	response	objects

testing,	Testing-Testing

view	responses,	View	responses

response()	helper,	Custom	Responses,	Using	and	Creating	Response	Objects	in
Controllers,	Misc

REST	(Representational	State	Transfer),	The	Basics	of	REST-Like	JSON	APIs-The
Basics	of	REST-Like	JSON	APIs,	Glossary

restore()	method,	Eloquent,	Restoring	soft-deleted	entities

reverse()	method,	collection,	A	Few	Methods

right	angle	bracket,	triple	(>>>),	Tinker	prompt,	Tinker

rollBack()	method,	DB,	Transactions

Rollup,	Processing	JavaScript

route	caching,	Route	Caching

route	commands,	Artisan,	The	Grouped	Commands

route	groups,	Route	Groups-Name	Prefixes

(see	also	controllers)

defining,	Route	Groups

middleware	applied	to,	Middleware-Middleware

name	prefixes	using,	Name	Prefixes

namespace	prefixes	using,	Namespace	Prefixes

path	prefixes	using,	Path	Prefixes

subdomain	routing	using,	Subdomain	Routing

route	middleware,	Auth	Middleware,	The	Authorize	Middleware,	Binding	route
middleware

route	model	binding,	Route	Model	Binding-Custom	Route	Model	Binding

route()	helper,	Route	Names,	Route	Names-Route	Names,	URLs

route()	method,	redirect()->route()

route:cache	command,	Artisan,	Route	Caching

route:list	command,	Artisan,	Binding	a	resource	controller

routes,	Glossary

defining,	Route	Definitions-Route	Names

fluent	definitions	of,	Route	Names

handling,	Route	Handling

listing,	Binding	a	resource	controller

naming,	Route	Names-Route	Names

parameters	for,	Route	Parameters-Route	Parameters,	Route	Model	Binding-Custom
Route	Model	Binding,	From	Route	Parameters

testing,	Testing

verbs	for,	Route	Verbs

routes	folder,	The	Folders

routes()	method,	Auth,	Auth::routes()

routes.php	file,	Route	Definitions,	Using	middleware	groups

RouteServiceProvider,	Service	Providers,	Using	middleware	groups

rules	(abilities)	for	authorization,	Defining	Authorization	Rules

rules()	method,	form	request,	Creating	a	Form	Request

S

S3	cloud	storage,	Configuring	File	Access

s3	disk,	Configuring	File	Access

SaaS	(Software	as	a	Service),	Glossary

save()	method,	Eloquent,	Inserts

schedule	commands,	Artisan,	The	Grouped	Commands

schedule:run	command,	Artisan,	Available	Task	Types

scheduler,	Scheduler-Task	Hooks

Artisan	commands	as	tasks,	Available	Task	Types

avoiding	tasks	overlapping,	Blocking	and	Overlap

closures	as	tasks,	Available	Task	Types,	Handling	Task	Output

shell	commands	as	tasks,	Available	Task	Types

task	output,	handling,	Handling	Task	Output-Handling	Task	Output

task	types,	Available	Task	Types

time	frames	for,	setting,	Available	Time	Frames-Available	Time	Frames

scopes	(filters),	Eloquent,	Scopes-Removing	global	scopes,	Glossary

scopes	(privileges),	OAuth,	Passport	Scopes-Passport	Scopes

Scout	package,	Full-Text	Search	with	Laravel	Scout-Manually	Trigger	Indexing	via	the
CLI,	Glossary

drivers	supported,	Full-Text	Search	with	Laravel	Scout

installing	and	configuring,	Installing	Scout

manually	triggering,	Manually	Trigger	Indexing	via	Code

marking	model	for	indexing,	Marking	Your	Model	for	Indexing

not	using	for	some	operations,	Perform	Operations	Without	Indexing

queuing	actions	of,	Queues	and	Scout

searching	index,	Searching	Your	Index

scout.php	file,	Installing	Scout,	Queues	and	Scout

scout:import	command,	Artisan,	Manually	Trigger	Indexing	via	the	CLI

ScoutServiceProvider,	Installing	Scout

script	injection,	{{	Versus	{!!

search()	method,	Searching	Your	Index

Searchable	trait,	Marking	Your	Model	for	Indexing

searchable()	method,	Manually	Trigger	Indexing	via	Code

searchableAs()	method,	Marking	Your	Model	for	Indexing

secret()	method,	Prompts

@section	directive,	Blade,	Defining	Sections	with	@section/@show	and	@yield-@extends

sections,	Blade,	Defining	Sections	with	@section/@show	and	@yield

secure()	method,	redirects,	Other	Redirect	Methods

secure()	method,	Request,	User	and	request	state

security

authentication	(see	authentication)

authorization	(see	authorization)

CSRF	(cross-site	request	forgery),	CSRF	Protection-CSRF	Protection,	Bringing	Echo
into	your	project,	Glossary

encryption	(see	encryption)

mass	assignment,	Eloquent	Model	Mass	Assignment,	Mass	assignment-Mass
assignment,	Glossary

script	injection,	{{	Versus	{!!

see()	method,	TestCase,	Custom	Application	Testing	Assertions

seeCookie()	method,	TestCase,	Custom	Application	Testing	Assertions,	Cookies

seed()	method,	TestCase,	Artisan	and	Seed

seeders,	Seeding-Defining	and	accessing	multiple	model	factory	types

creating,	Creating	a	Seeder

model	factories	for,	Model	Factories-Defining	and	accessing	multiple	model	factory
types

testing,	Artisan	and	Seed

seeHeader()	method,	TestCase,	Custom	Application	Testing	Assertions

seeInDatabase()	method,	TestCase,	Custom	Application	Testing	Assertions

seeInField()	method,	TestCase,	Custom	Application	Testing	Assertions

seeIsChecked()	method,	TestCase,	Custom	Application	Testing	Assertions

seeIsSelected()	method,	TestCase,	Custom	Application	Testing	Assertions

seeJson()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing	Assertions

seeJsonEquals()	method,	TestCase,	JSON	and	Non-visit()	Application	Testing	Assertions

seeLink()	method,	TestCase,	Custom	Application	Testing	Assertions

seePageIs()	method,	TestCase,	Custom	Application	Testing	Assertions

seePlainCookie()	method,	TestCase,	Cookies

segment()	method,	Request,	From	Request

segments()	method,	Request,	From	Request

select()	method,	DB,	Raw	selects,	Constraining	methods

select()	method,	TestCase,	Clicking	and	Forms

selectRaw()	method,	DB,	Writing	raw	queries	inside	query	builder	methods	with	DB::raw

send()	method,	Mail,	“Classic”	Mail

send()	method,	Notification,	Sending	notifications	with	the	Notification	facade

sendOutputTo()	method,	tasks,	Handling	Task	Output

serialization,	Eloquent	Serialization-Hiding	attributes	from	JSON,	Glossary

SerializesModels	trait,	Creating	a	job

serve	command,	Artisan,	Basic	Artisan	Commands

server()	method,	Request,	User	and	request	state

server.php	file,	The	Loose	Files

service	container	(see	container)

service	providers,	Service	Providers-Service	Providers,	Service	Providers,	Glossary

(see	also	specific	service	providers)

services,	injecting	into	a	view,	Blade	Service	Injection-Blade	Service	Injection

services.php	file,	Mail

session	commands,	Artisan,	The	Grouped	Commands

Session	facade,	Accessing	the	Session

session()	helper,	Accessing	the	Session-The	Methods	Available	on	Session	Instances

session()	method,	Request,	Accessing	the	Session

session()	method,	TestCase,	Authentication	and	Sessions

session.php	file,	Sessions

sessions,	Sessions-Flash	Session	Storage

accessing,	Accessing	the	Session-The	Methods	Available	on	Session	Instances

configuring,	Sessions

drivers	supported,	Sessions

flash	session	storage,	Flash	Session	Storage

testing,	Authentication	and	Sessions,	Session-Session

setter	injection,	A	Quick	Introduction	to	Dependency	Injection

setUp()	method,	Testing

share()	method,	Sharing	a	variable	globally

shell	commands,	scheduling	as	tasks,	Available	Task	Types

ShouldBroadcast	interface,	Broadcasting	an	Event

shouldHaveReceived()	method,	Mockery,	Mocking	Facades

shouldIgnoreMissing()	method,	Mockery,	Mockery

shouldReceive()	method,	Mockery,	Mockery,	Mocking	Facades

@show	directive,	Blade,	Defining	Sections	with	@section/@show	and	@yield-@extends,
@section	and	@endsection

show()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

showLinkRequestForm()	method,	ForgotPasswordController

showLoginForm()	method,	AuthenticatesUsers	trait

showRegistrationForm()	method,	RegistersUsers	trait

showResetForm()	method,	ResetPasswordController

shuffle()	method,	collection,	A	Few	Methods

singleton()	method,	Binding	to	Singletons,	Aliases,	and	Instances

singletons,	binding	to,	Binding	to	Singletons,	Aliases,	and	Instances

size()	method,	Storage,	Using	the	Storage	Facade

skip()	method,	DB,	Modifying	methods

Slack	notifications,	Slack	notifications

slash	(/),	escaping	in	Artisan	commands,	Controller	Organization	and	JSON	Returns

smallInteger()	method,	Blueprint,	Creating	columns

SMS	notifications,	SMS	notifications

soft	deletes,	Soft	deletes-Force-deleting	soft-deleted	entities,	Glossary

softDeletes()	method,	Blueprint,	Creating	columns,	Enabling	soft	deletes

Software	as	a	Service	(SaaS),	Glossary

sort()	method,	collection,	A	Few	Methods

sortBy()	method,	collection,	A	Few	Methods

sortByDesc()	method,	collection,	A	Few	Methods

sorting	API	results,	Sorting	and	Filtering-Sorting	Your	API	Results

source	maps,	Elixir,	Source	maps

Spark,	Glossary

SplFileInfo	class,	Basic	File	Uploads	and	Manipulation

SQL	queries,	raw,	Raw	SQL-Raw	deletes

(see	also	query	builder)

SQLite

dependencies	for,	Modifying	columns

modifying	multiple	columns,	Modifying	columns

starts_with()	helper,	The	String	Helpers	and	Pluralization,	Strings

stateless	APIs,	The	Basics	of	REST-Like	JSON	APIs

statement()	method,	DB,	Raw	SQL

static	calls,	Route	Definitions

stdClass	object

returned	by	DB	facade,	Other	Database	Configuration	Options,	Raw	selects

returned	by	loops,	@forelse

storage,	Local	and	Cloud	File	Managers-Configuring	File	Access

(see	also	databases)

additional	providers,	adding,	Adding	Additional	Flysystem	Providers

cache,	Cache-The	Methods	Available	on	Cache	Instances

configuring,	Configuring	File	Access-Configuring	File	Access

cookies,	Cookies-Setting	cookies	on	response	objects

drivers	supported,	Local	and	Cloud	File	Managers

File	facade	for,	Using	the	Storage	Facade

file	uploads,	handling,	Basic	File	Uploads	and	Manipulation-Basic	File	Uploads	and
Manipulation

flash	session	storage,	Flash	Session	Storage

session	storage,	Sessions-Flash	Session	Storage

Storage	facade	methods	for,	Using	the	Storage	Facade-Using	the	Storage	Facade

testing,	File	Storage-Returning	fake	files

types	of,	Local	and	Cloud	File	Managers-Configuring	File	Access

storage	commands,	Artisan,	The	Grouped	Commands

Storage	facade,	Using	the	Storage	Facade-Using	the	Storage	Facade

storage	folder,	The	Folders

storage:link	command,	Artisan,	Configuring	File	Access

storage_path()	helper,	Configuring	File	Access,	Application	Paths

Store	class,	Accessing	the	Session

store()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

store()	method,	UploadedFile,	Uploaded	Files-Uploaded	Files,	Basic	File	Uploads	and
Manipulation

storeAs()	method,	UploadedFile,	Uploaded	Files-Uploaded	Files,	Basic	File	Uploads	and
Manipulation

string()	method,	Blueprint,	Creating	columns

strings

helpers	for,	Strings-Strings

localization,	Localization-Pluralization	in	localization

pluralization,	The	String	Helpers	and	Pluralization,	Pluralization	in	localization

string	helpers,	The	String	Helpers	and	Pluralization

str_contains()	helper,	The	String	Helpers	and	Pluralization,	Strings

str_is()	helper,	The	String	Helpers	and	Pluralization,	Strings

str_limit()	helper,	Strings

str_plural()	helper,	The	String	Helpers	and	Pluralization

str_random()	helper,	Strings

str_slug()	helper,	The	String	Helpers	and	Pluralization,	Strings

subdomain	routing,	Subdomain	Routing

subject()	method,	mailable,	Methods	Available	in	build()

submitForm()	method,	TestCase,	Clicking	and	Forms

subscribe()	method,	events,	Event	subscribers

sum()	method,	collection,	A	Few	Methods

sum()	method,	DB,	Ending/returning	methods

sum()	method,	Eloquent,	Aggregates

SwiftMailer,	Mail

Symfony,	Laravel	4,	Glossary

Console	component,	An	Introduction	to	Artisan

HttpFoundation	classes,	The	Request	Object

Translation	component,	Pluralization	in	localization

sync()	method,	Eloquent,	Many	to	many

synchronizer	tokens,	Passport,	Tokens	from	Laravel	session	authentication
(synchronizer	tokens)-Tokens	from	Laravel	session	authentication	(synchronizer	tokens)

system	requirements,	Who	This	Book	Is	For,	System	Requirements-Composer

T

table()	method,	Table	output

take()	method,	collection,	A	Few	Methods

take()	method,	DB,	Modifying	methods

take()	method,	Eloquent,	Retrieving	Data	with	Eloquent

Task::all()	query,	Views,	Controllers

tasks,	scheduling	(see	scheduler)

templates	(see	Blade;	views)

@test	docblock,	Naming	Tests

TestCase	class,	TestCase

TestCase.php	file,	Testing	Basics

testing,	Testing-Testing	Basics

APIs,	Testing

application	tests,	Testing,	Application	Testing-Authentication	and	Sessions,	Glossary

Artisan	commands,	Testing,	Artisan	and	Seed

assertions	in,	Glossary

authentication	and	authorization,	Testing-Testing,	Authentication	and	Sessions

cache,	Cache

cookies,	Cookies-Cookies

database	operations,	Testing-Testing

dependency	injection	in,	Testing

environment	for,	The	Testing	Environment

error	bags,	Testing	Message	and	Error	Bags

failed	test	results,	Testing	Basics

integration	tests,	Testing,	Glossary

inversion	of	control	in,	Testing

JSON,	Testing	Basics

localization,	Translation	and	Localization

mail,	Mail

message	bags,	Testing	Message	and	Error	Bags

Mockery	library	for,	Mocking-Mocking	Facades

naming	tests,	Naming	Tests

notifications,	Notifications

requests	and	responses,	Testing-Testing

routes,	Testing

running	tests,	Testing,	Tests,	Testing	with	Elixir

seeders,	Artisan	and	Seed

session,	Authentication	and	Sessions

sessions,	Session-Session

storage,	File	Storage-Returning	fake	files

traits	for,	The	Testing	Traits

unit	tests,	Testing

unit	tests	for,	Glossary

user	input,	Testing

views,	Testing-Testing

with	Behat,	Testing

with	Faker,	Testing

with	Mockery,	Testing

with	PHPUnit,	Testing

writing	tests,	Testing

tests	folder,	The	Folders,	Testing	Basics,	Naming	Tests

text()	method,	Blueprint,	Creating	columns

text()	method,	mailable,	Mail	Templates

thenPing()	method,	tasks,	Handling	Task	Output

time()	method,	Blueprint,	Creating	columns

times	and	dates	(see	Carbon	package;	scheduler;	timestamps)

timestamp()	method,	Blueprint,	Creating	columns

timestamps,	Creating	columns,	Timestamps,	Date	mutators,	Child	Records	Updating
Parent	Record	Timestamps-Eager	loading	only	the	count

timestamps()	method,	Blueprint,	Creating	columns

Tinker,	Basic	Artisan	Commands,	Tinker,	Tinker,	Glossary

tinker	command,	Artisan,	Basic	Artisan	Commands

tinyInteger()	method,	Blueprint,	Creating	columns

TL;DR	(too	long;	didn’t	read),	How	This	Book	Is	Structured,	Glossary

to()	method,	redirect()->to()

toArray()	method,	collection,	A	Few	Methods

toArray()	method,	Eloquent,	Eloquent	Serialization

toBroadcast()	method,	notification,	Broadcast	notifications

toDatabase()	method,	notification,	Database	notifications

toJson()	method,	Eloquent,	Eloquent	Serialization

Tokenizer	PHP	extension,	System	Requirements

tokens,	CSRF,	CSRF	Protection-CSRF	Protection

toMail()	method,	notification,	Email	notifications-Email	notifications

toNexmo()	method,	notification,	SMS	notifications

too	long;	didn’t	read	(TL;DR),	How	This	Book	Is	Structured,	Glossary

toOthers()	method,	events,	Excluding	the	current	user	from	broadcast	events,	Excluding
the	current	user

top-level	domains,	for	local	development	site,	Configuring	Homestead

toSearchableArray()	method,	Marking	Your	Model	for	Indexing

toSlack()	method,	notification,	Slack	notifications

transaction()	method,	DB,	Transactions

transactions,	Transactions

translation	(see	localization)

Translation	component,	Symfony,	Pluralization	in	localization

trashed()	method,	Eloquent,	Querying	with	soft	deletes

truncate()	method,	DB,	Deletes

Twig	Bridge	package,	Blade	Templating

(see	also	Blade)

type()	method,	TestCase,	Clicking	and	Forms

typehint,	Injecting	Dependencies	into	Controllers,	Glossary

typehinting,	How	the	Container	Is	Wired,	Binding	a	Concrete	Instance	to	an	Interface

U

uncheck()	method,	TestCase,	Clicking	and	Forms

union()	method,	DB,	Unions

unionAll()	method,	DB,	Unions

unique()	method,	Blueprint,	Building	extra	properties	fluently

unit	tests,	Testing,	Glossary

universal	to,	for	mail,	Universal	to

@unless	directive,	Blade,	@unless	and	@endunless

unsearchable()	method,	Manually	Trigger	Indexing	via	Code

unsigned()	method,	Blueprint,	Building	extra	properties	fluently

up()	method,	migrations,	Defining	Migrations,	Defining	Migrations

update()	method,	DB,	Raw	updates,	Updates

update()	method,	Eloquent,	Updates,	Mass	assignment

update()	method,	resource	controllers,	The	methods	of	Laravel’s	resource	controllers

updateExistingPivot()	method,	Eloquent,	Many	to	many

uploaded	files,	Uploaded	Files-Uploaded	Files,	Basic	File	Uploads	and	Manipulation-Basic
File	Uploads	and	Manipulation,	File	Storage-Returning	fake	files

UploadedFile	class,	Uploaded	Files,	Files,	Uploading	fake	files

url()	helper,	Route	Names,	Route	Names,	URLs

url()	method,	Request,	User	and	request	state

URLs

helpers	for,	URLs-URLs

user	input	from	route	parameters,	From	Route	Parameters

user	input	from	URL	segments,	From	Request

user	authentication	(see	authentication)

user	authorization	(see	authorization)

user	input

Artisan	commands,	Using	Input-Prompts

Eloquent	model,	Eloquent	Model	Mass	Assignment

form	requests,	Form	Requests-Using	a	Form	Request

getting	and	handling	with	controllers,	Getting	User	Input-Getting	User	Input

Request	object,	Injecting	a	Request	Object-JSON	Input	(and	$request->json()),	Basic
user	input-User	and	request	state

route	parameters,	From	Route	Parameters

testing,	Testing

uploaded	files,	Uploaded	Files-Uploaded	Files

URLs,	Route	Data

validating,	Validation-Displaying	Validation	Error	Messages

User	model,	The	User	Model	and	Migration-The	User	Model	and	Migration

user()	method,	Using	the	auth()	Global	Helper	and	the	Auth	Facade,	Changing	the
Default	Guard

username()	method,	AuthenticatesUsers	trait

uuid()	method,	Blueprint,	Creating	columns

V

Vagrant,	Installing	Homestead’s	dependencies,	Glossary

commands	for,	Using	Homestead	day-to-day

mapping	Homestead	folders	to,	Configuring	Homestead

migrations	with,	Running	Migrations

Valet	package,	Laravel	Valet-Laravel	Valet,	Glossary

validate()	method,	controller,	redirect()->with(),	validate()	in	the	Controller	Using
ValidatesRequests-validate()	in	the	Controller	Using	ValidatesRequests

validateLogin()	method,	AuthenticatesUsers	trait

validation	of	user	input,	Validation-Displaying	Validation	Error	Messages,	Glossary

error	messages	from,	displaying,	Displaying	Validation	Error	Messages

manual	validation,	Manual	Validation

validate()	method,	controller,	validate()	in	the	Controller	Using	ValidatesRequests-
validate()	in	the	Controller	Using	ValidatesRequests

validation	rules,	validate()	in	the	Controller	Using	ValidatesRequests

Validator	class,	Message	Bags,	Manual	Validation

validator()	method,	RegisterController

vendor	commands,	Artisan,	The	Grouped	Commands

vendor	folder,	The	Folders

vendor:publish	command,	Artisan,	The	Vue	components,	Installing	Scout

versioning,	in	Elixir,	Versioning-Versioning

versions	of	Laravel,	How	This	Book	Is	Structured

versions	of	Laravel,	prior	to	5.2

ACL	(access	control	list),	Authorization	(ACL)	and	Roles

authentication	guards,	Changing	the	Default	Guard

fluent	route	definitions,	Route	Names

middleware	groups,	Using	middleware	groups

render()	method,	pagination,	Paginating	Database	Results

testing	traits,	TestCase

versions	of	Laravel,	prior	to	5.3

API	token	authentication,	Laravel	5.2+	API	Token	Authentication-Laravel	5.2+	API
Token	Authentication

assertViewHas()	method,	Testing

authentication	controllers,	User	Authentication	and	Authorization

classic	mail,	“Classic”	Mail

compiling	JavaScript,	Processing	JavaScript

DB	facade	results,	Raw	selects

Eloquent	results,	Get	many

$expression	parameter,	Parameters	in	Custom	Blade	Directives

generating	resource	controllers,	Controllers

$loop	variable,	@forelse

PHP	and	extensions,	System	Requirements

policy	methods,	Generating	policies

routes	file,	Route	Definitions

withCookie()	method,	Response,	Setting	cookies	on	response	objects

via()	method,	notification,	Notifications,	Defining	the	via()	Method	for	Your	Notifiables

viaRemember()	method,	“Remember	Me”

view	commands,	Artisan,	The	Grouped	Commands

view	composers,	Using	View	Composers	to	Share	Variables	with	Every	View,	Binding
Data	to	Views	Using	View	Composers-Class-based	view	composers,	Glossary

view	responses,	View	responses

view()	helper,	View	Composers	and	Service	Injection-Class-based	view	composers,	View
responses,	Misc

view()	method,	Response,	View	responses

views,	Views-Using	View	Composers	to	Share	Variables	with	Every	View,	Glossary,
Glossary

binding	data	to,	Binding	Data	to	Views	Using	View	Composers-Class-based	view
composers

loading,	Views

passing	variables	to,	Views,	View	Composers	and	Service	Injection

testing,	Testing-Testing

types	of,	Views

VirtualBox,	Installing	Homestead’s	dependencies

$visible	property,	Transforming	Results

visit()	method,	TestCase,	“Visiting”	Routes

VMWare,	Installing	Homestead’s	dependencies

Vue	components,	The	Vue	components-The	Vue	components

W

wantsJson()	method,	Request,	User	and	request	state

web	guard,	Guards

web	middleware	group,	Using	middleware	groups

web	routes,	Route	Definitions

(see	also	routes)

web.php	file,	Route	Definitions

Webpack,	Processing	JavaScript

website	resources	(see	online	resources)

WebSocket	authentication	(see	Echo)

WebSockets,	Broadcasting	Events	over	WebSockets,	and	Laravel	Echo-Subscribing	to
notifications	with	Echo

authorization	for	channels,	Binding	authorization	definitions	for	WebSocket	channels-
Binding	authorization	definitions	for	WebSocket	channels

broadcasting	events,	Broadcasting	an	Event-Broadcasting	an	Event

channels	for,	Broadcasting	an	Event,	Binding	authorization	definitions	for	WebSocket
channels

configuring,	Configuration	and	Setup

drivers	supported,	Configuration	and	Setup

Echo	for,	Receiving	the	Message

event	structure	for,	Broadcasting	an	Event

excluding	user	from	events,	Excluding	the	current	user	from	broadcast	events-
Excluding	the	current	user	from	broadcast	events

Pub/Sub	pattern	used	by,	Broadcasting	Events	over	WebSockets,	and	Laravel	Echo

queue	worker	for,	Configuration	and	Setup

receiving	event	messages,	Receiving	the	Message-Receiving	the	Message

service	provider	configuration,	The	broadcast	service	provider

when()	method,	Contextual	Binding

where()	method,	collection,	A	Few	Methods

where()	method,	DB,	Constraining	methods-Constraining	methods

where()	method,	Eloquent,	Retrieving	Data	with	Eloquent,	Filtering	Your	API	Results

whereBetween()	method,	DB,	Constraining	methods

whereExists()	method,	DB,	Constraining	methods

whereIn()	method,	DB,	Constraining	methods

whereNull()	method,	DB,	Constraining	methods

whereRaw()	method,	DB,	Constraining	methods

with()	method,	redirect()->with()-redirect()->with(),	Closure-based	view	composers

withCookie()	method,	Response,	Setting	cookies	on	response	objects

withErrors()	method,	Named	Error	Bags

withInput()	method,	redirect()->with()

withoutEvents()	method,	TestCase,	Jobs	and	Events

withoutGlobalScope()	method,	Removing	global	scopes

withoutGlobalScopes()	method,	Removing	global	scopes

WithoutMiddleware	trait,	WithoutMiddleware

withoutOverlapping()	method,	tasks,	Blocking	and	Overlap

withoutSyncingToSearch()	method,	Perform	Operations	Without	Indexing

withPivot()	method,	Eloquent,	Getting	data	from	the	pivot	table

withSwiftMessage()	method,	mailable,	Methods	Available	in	build()

withTrashed()	method,	Eloquent,	Querying	with	soft	deletes

workers	for	queues,	Running	a	Queue	Worker,	Configuration	and	Setup

X

X-	preceding	header	names,	Reading	and	Sending	Headers

Y

@yield	directive,	Blade,	Defining	Sections	with	@section/@show	and	@yield

About	the	Author
Matt	Stauffer	is	a	developer	and	a	teacher.	He	is	a	partner	and	technical	director	at	Tighten
Co.,	blogs	at	mattstauffer.co,	and	hosts	The	Five-Minute	Geek	Show	and	the	Laravel	Podcast.

http://mattstauffer.co

Colophon
The	animal	on	the	cover	of	Laravel:	Up	and	Running	is	a	gemsbok	(oryx	gazella).	This	large
antelope	is	native	to	the	deserts	of	South	Africa,	Botswana,	Zimbabwe,	and	Namibia,	where	it
is	featured	on	the	country’s	coat	of	arms.

Gemsbok	measure	about	5	feet	7	inches	tall	at	the	shoulder	and	can	weigh	from	250	to	390
pounds.	They	are	typically	pale	gray	or	brown,	with	black	and	white	facial	markings	and	long
black	tails.	A	black	stripe	extends	from	the	chin	to	the	lower	edge	of	the	neck.	The	gemsbok’s
impressive	straight	horns,	used	in	defensive	maneuvers,	average	33	inches	in	length	and	are
regarded	as	charms	in	many	cultures.	In	medieval	England,	they	were	often	marketed	as
unicorn	horns.

Although	these	horns	make	the	gemsbok	a	highly-sought	trophy	animal,	the	population
remains	stable	throughout	Southern	Africa.	In	1969,	gemsbok	were	introduced	to	southern
New	Mexico,	where	their	current	population	is	around	3,000.

Gemsbok	are	well-suited	to	such	desert	environments,	with	the	ability	to	survive	without
drinking	water	for	most	of	the	year.	To	achieve	this,	they	do	not	pant	or	sweat,	allowing	their
body	temperature	to	rise	several	degrees	above	normal	on	hot	days.	Their	lifespan	is
approximately	18	years	in	the	wild.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Riverside	Natural	History.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
What	This	Book	Is	About

Who	This	Book	Is	For

How	This	Book	Is	Structured

Conventions	Used	in	This	Book

O’Reilly	Safari

How	to	Contact	Us

Acknowledgments

1.	Why	Laravel?
Why	Use	a	Framework?

“I’ll	Just	Build	It	Myself”

Consistency	and	Flexibility

A	Short	History	of	Web	and	PHP	Frameworks
Ruby	on	Rails

The	Influx	of	PHP	Frameworks

The	Good	and	the	Bad	of	CodeIgniter

Laravel	1,	2,	and	3

Laravel	4

Laravel	5

What’s	So	Special	About	Laravel?
The	Philosophy	of	Laravel

How	Laravel	Achieves	Developer	Happiness

The	Laravel	Community

How	It	Works

Why	Laravel?

2.	Setting	Up	a	Laravel	Development	Environment
System	Requirements

Composer

Local	Development	Environments
Laravel	Valet

Laravel	Homestead

Creating	a	New	Laravel	Project
Installing	Laravel	with	the	Laravel	Installer	Tool

Installing	Laravel	with	Composer ’s	create-project	Feature

Laravel’s	Directory	Structure
The	Folders

The	Loose	Files

Configuration

Up	and	Running

Testing

TL;DR

3.	Routing	and	Controllers
Route	Definitions

Route	Verbs

Route	Handling

Route	Parameters

Route	Names

Route	Groups
Middleware

Path	Prefixes

Subdomain	Routing

Namespace	Prefixes

Name	Prefixes

Views
Using	View	Composers	to	Share	Variables	with	Every	View

Controllers
Getting	User	Input

Injecting	Dependencies	into	Controllers

Resource	Controllers

Route	Model	Binding
Implicit	Route	Model	Binding

Custom	Route	Model	Binding

Route	Caching

Form	Method	Spoofing
An	Introduction	to	HTTP	Verbs

HTTP	Verbs	in	Laravel

HTTP	Method	Spoofing	in	HTML	Forms

CSRF	Protection

Redirects
redirect()->to()

redirect()->route()

redirect()->back()

Other	Redirect	Methods

redirect()->with()

Aborting	the	Request

Custom	Responses

response()->make()

response()->json()	and	->jsonp()

response()->download()	and	->file()

Testing

TL;DR

4.	Blade	Templating
Echoing	Data

Control	Structures
Conditionals

Loops

or

Template	Inheritance
Defining	Sections	with	@section/@show	and	@yield

@parent

@include

@each

View	Composers	and	Service	Injection
Binding	Data	to	Views	Using	View	Composers

Blade	Service	Injection

Custom	Blade	Directives
Parameters	in	Custom	Blade	Directives

Example:	Using	Custom	Blade	Directives	for	a	Multitenant	App

Testing

TL;DR

5.	Frontend	Components

Elixir
Elixir	Folder	Structure

Running	Elixir

What	Does	Elixir	Provide?

Pagination
Paginating	Database	Results

Manually	Creating	Paginators

Message	Bags
Named	Error	Bags

String	Helpers,	Pluralization,	and	Localization
The	String	Helpers	and	Pluralization

Localization

Testing
Testing	with	Elixir

Testing	Message	and	Error	Bags

Translation	and	Localization

TL;DR

6.	Collecting	and	Handling	User	Data
Injecting	a	Request	Object

$request->all()

$request->except()	and	$request->only()

$request->has()	and	$request->exists()

$request->input()

Array	Input

JSON	Input	(and	$request->json())

Route	Data

From	Request

From	Route	Parameters

Uploaded	Files

Validation
validate()	in	the	Controller	Using	ValidatesRequests

Manual	Validation

Displaying	Validation	Error	Messages

Form	Requests
Creating	a	Form	Request

Using	a	Form	Request

Eloquent	Model	Mass	Assignment

{{	Versus	{!!

Testing

TL;DR

7.	Artisan	and	Tinker
An	Introduction	to	Artisan

Basic	Artisan	Commands
Options

The	Grouped	Commands

Writing	Custom	Artisan	Commands
Registering	Commands

A	Sample	Command

Arguments	and	Options

Using	Input

Prompts

Output

Calling	Artisan	Commands	in	Normal	Code

Tinker

Testing

TL;DR

8.	Database	and	Eloquent
Configuration

Database	Connections

Other	Database	Configuration	Options

Migrations
Defining	Migrations

Running	Migrations

Seeding
Creating	a	Seeder

Model	Factories

Query	Builder
Basic	Usage	of	the	DB	Facade

Raw	SQL

Chaining	with	the	Query	Builder

Transactions

Introduction	to	Eloquent
Creating	and	Defining	Eloquent	Models

Retrieving	Data	with	Eloquent

Inserts	and	Updates	with	Eloquent

Deleting	with	Eloquent

Scopes

Customizing	Field	Interactions	with	Accessors,	Mutators,	and	Attribute
Casting

Eloquent	Collections

Eloquent	Serialization

Eloquent	Relationships

Child	Records	Updating	Parent	Record	Timestamps

Eloquent	Events

Testing

TL;DR

9.	User	Authentication	and	Authorization
The	User	Model	and	Migration

Using	the	auth()	Global	Helper	and	the	Auth	Facade

The	Auth	Controllers
RegisterController

LoginController

ResetPasswordController

ForgotPasswordController

Auth::routes()

The	Auth	Scaffold

“Remember	Me”

Manually	Authenticating	Users

Auth	Middleware

Guards
Changing	the	Default	Guard

Using	Other	Guards	Without	Changing	the	Default

Adding	a	New	Guard

Creating	a	Custom	User	Provider

Custom	User	Providers	for	Nonrelational	Databases

Auth	Events

Authorization	(ACL)	and	Roles
Defining	Authorization	Rules

The	Gate	Facade	(and	Injecting	Gate)

The	Authorize	Middleware

Controller	Authorization

Checking	on	the	User	Instance

Blade	Checks

Intercepting	Checks

Policies

Testing

TL;DR

10.	Requests	and	Responses
Laravel’s	Request	Lifecycle

Bootstrapping	the	Application

Service	Providers

The	Request	Object
Getting	a	Request	Object	in	Laravel

Getting	Basic	Information	About	a	Request

Persistence

The	Response	Object

Using	and	Creating	Response	Objects	in	Controllers

Specialized	Response	Types

Laravel	and	Middleware
An	Introduction	to	Middleware

Creating	Custom	Middleware

Binding	Middleware

Passing	Parameters	to	Middleware

Testing

TL;DR

11.	The	Container
A	Quick	Introduction	to	Dependency	Injection

Dependency	Injection	and	Laravel

The	app()	Global	Helper

How	the	Container	Is	Wired

Binding	Classes	to	the	Container
Binding	to	a	Closure

Binding	to	Singletons,	Aliases,	and	Instances

Binding	a	Concrete	Instance	to	an	Interface

Contextual	Binding

Constructor	Injection

Method	Injection

Facades	and	the	Container
How	Facades	Work

Service	Providers

Testing

TL;DR

12.	Testing
Testing	Basics

Naming	Tests

The	Testing	Environment

The	Testing	Traits
WithoutMiddleware

DatabaseMigrations

DatabaseTransactions

Application	Testing
TestCase

“Visiting”	Routes

Custom	Application	Testing	Assertions

JSON	and	Non-visit()	Application	Testing	Assertions

Clicking	and	Forms

Jobs	and	Events

Authentication	and	Sessions

Artisan	and	Seed

Mocking
Mockery

Mocking	Facades

TL;DR

13.	Writing	APIs
The	Basics	of	REST-Like	JSON	APIs

Controller	Organization	and	JSON	Returns

Reading	and	Sending	Headers
Sending	Response	Headers	in	Laravel

Reading	Request	Headers	in	Laravel

Eloquent	Pagination

Sorting	and	Filtering
Sorting	Your	API	Results

Filtering	Your	API	Results

Transforming	Results
Writing	Your	Own	Transformer

Nesting	and	Relationships

API	Authentication	with	Laravel	Passport
A	Brief	Introduction	to	OAuth	2.0

Installing	Passport

Passport’s	API

Passport’s	Available	Grant	Types

Managing	Clients	and	Tokens	with	the	Passport	API	and	the	Vue
Components

Passport	Scopes

Laravel	5.2+	API	Token	Authentication

Testing

TL;DR

14.	Storage	and	Retrieval
Local	and	Cloud	File	Managers

Configuring	File	Access

Using	the	Storage	Facade

Adding	Additional	Flysystem	Providers

Basic	File	Uploads	and	Manipulation

Sessions
Accessing	the	Session

The	Methods	Available	on	Session	Instances

Flash	Session	Storage

Cache
Accessing	the	Cache

The	Methods	Available	on	Cache	Instances

Cookies
Cookies	in	Laravel

Accessing	the	Cookie	Tools

Full-Text	Search	with	Laravel	Scout
Installing	Scout

Marking	Your	Model	for	Indexing

Searching	Your	Index

Queues	and	Scout

Perform	Operations	Without	Indexing

Manually	Trigger	Indexing	via	Code

Manually	Trigger	Indexing	via	the	CLI

Testing
File	Storage

Session

Cache

Cookies

TL;DR

15.	Mail	and	Notifications
Mail

“Classic”	Mail

Basic	“Mailable”	Mail	Usage

Mail	Templates

Methods	Available	in	build()

Attachments	and	Inline	Images

Queues

Local	Development

Notifications
Defining	the	via()	Method	for	Your	Notifiables

Sending	Notifications

Queueing	Notifications

Out-of-the-Box	Notification	Types

Testing
Mail

Notifications

TL;DR

16.	Queues,	Jobs,	Events,	Broadcasting,	and	the	Scheduler
Queues

Why	Queues?

Basic	Queue	Configuration

Queued	Jobs

Running	a	Queue	Worker

Handling	Errors

Controlling	the	Queue

Queues	Supporting	Other	Functions

Events
Firing	an	Event

Listening	for	an	Event

Broadcasting	Events	over	WebSockets,	and	Laravel	Echo
Configuration	and	Setup

Broadcasting	an	Event

Receiving	the	Message

Advanced	Broadcasting	Tools

Laravel	Echo	(the	JavaScript	Side)

Scheduler
Available	Task	Types

Available	Time	Frames

Blocking	and	Overlap

Handling	Task	Output

Task	Hooks

Testing

TL;DR

17.	Helpers	and	Collections
Helpers

Arrays

Strings

Application	Paths

URLs

Misc

Collections
The	Basics	of	Collections

A	Few	Methods

TL;DR

Glossary

Index

	Preface
	What This Book Is About
	Who This Book Is For
	How This Book Is Structured
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	1. Why Laravel?
	Why Use a Framework?
	“I’ll Just Build It Myself”
	Consistency and Flexibility

	A Short History of Web and PHP Frameworks
	Ruby on Rails
	The Influx of PHP Frameworks
	The Good and the Bad of CodeIgniter
	Laravel 1, 2, and 3
	Laravel 4
	Laravel 5

	What’s So Special About Laravel?
	The Philosophy of Laravel
	How Laravel Achieves Developer Happiness
	The Laravel Community

	How It Works
	Why Laravel?

	2. Setting Up a Laravel Development Environment
	System Requirements
	Composer
	Local Development Environments
	Laravel Valet
	Laravel Homestead
	Setting up Homestead
	Installing Homestead’s dependencies
	Installing Homestead
	Configuring Homestead
	Creating databases in Homestead
	Provisioning Homestead
	Using Homestead day-to-day
	Connecting to Homestead databases from desktop applications

	Creating a New Laravel Project
	Installing Laravel with the Laravel Installer Tool
	Installing Laravel with Composer’s create-project Feature

	Laravel’s Directory Structure
	The Folders
	The Loose Files

	Configuration
	Up and Running
	Testing
	TL;DR

	3. Routing and Controllers
	Route Definitions
	Route Verbs
	Route Handling
	Route Parameters
	Route Names

	Route Groups
	Middleware
	Path Prefixes
	Subdomain Routing
	Namespace Prefixes
	Name Prefixes

	Views
	Using View Composers to Share Variables with Every View

	Controllers
	Getting User Input
	Injecting Dependencies into Controllers
	Resource Controllers
	The methods of Laravel’s resource controllers
	Binding a resource controller

	Route Model Binding
	Implicit Route Model Binding
	Custom Route Model Binding

	Route Caching
	Form Method Spoofing
	An Introduction to HTTP Verbs
	HTTP Verbs in Laravel
	HTTP Method Spoofing in HTML Forms

	CSRF Protection
	Redirects
	redirect()->to()
	redirect()->route()
	redirect()->back()
	Other Redirect Methods
	redirect()->with()

	Aborting the Request
	Custom Responses
	response()->make()
	response()->json() and ->jsonp()
	response()->download() and ->file()

	Testing
	TL;DR

	4. Blade Templating
	Echoing Data
	Control Structures
	Conditionals
	@if
	@unless and @endunless

	Loops
	@for, @foreach, and @while
	@forelse

	or

	Template Inheritance
	Defining Sections with @section/@show and @yield
	@extends
	@section and @endsection

	@parent
	@include
	@each

	View Composers and Service Injection
	Binding Data to Views Using View Composers
	Sharing a variable globally
	Closure-based view composers
	Class-based view composers

	Blade Service Injection

	Custom Blade Directives
	Parameters in Custom Blade Directives
	Example: Using Custom Blade Directives for a Multitenant App

	Testing
	TL;DR

	5. Frontend Components
	Elixir
	Elixir Folder Structure
	Running Elixir
	What Does Elixir Provide?
	The --production flag
	Passing multiple files
	Source maps
	Preprocessorless CSS
	Concatenating JavaScript
	Processing JavaScript
	Versioning
	Tests
	Elixir extensions

	Pagination
	Paginating Database Results
	Manually Creating Paginators

	Message Bags
	Named Error Bags

	String Helpers, Pluralization, and Localization
	The String Helpers and Pluralization
	Localization
	Basic localization
	Parameters in localization
	Pluralization in localization

	Testing
	Testing with Elixir
	Testing Message and Error Bags
	Translation and Localization

	TL;DR

	6. Collecting and Handling User Data
	Injecting a Request Object
	$request->all()
	$request->except() and $request->only()
	$request->has() and $request->exists()
	$request->input()
	Array Input
	JSON Input (and $request->json())

	Route Data
	From Request
	From Route Parameters

	Uploaded Files
	Validation
	validate() in the Controller Using ValidatesRequests
	Manual Validation
	Displaying Validation Error Messages

	Form Requests
	Creating a Form Request
	Using a Form Request

	Eloquent Model Mass Assignment
	{{ Versus {!!
	Testing
	TL;DR

	7. Artisan and Tinker
	An Introduction to Artisan
	Basic Artisan Commands
	Options
	The Grouped Commands

	Writing Custom Artisan Commands
	Registering Commands
	A Sample Command
	Arguments and Options
	Arguments, required, optional, and/or with defaults
	Options, required values, value defaults, and shortcuts
	Array arguments and array options
	Input descriptions

	Using Input
	argument()
	option()

	Prompts
	Output
	Table output
	Progress bars

	Calling Artisan Commands in Normal Code
	Tinker
	Testing
	TL;DR

	8. Database and Eloquent
	Configuration
	Database Connections
	Other Database Configuration Options

	Migrations
	Defining Migrations
	Creating a migration
	Creating tables
	Creating columns
	Building extra properties fluently
	Dropping tables
	Modifying columns
	Indexes and foreign keys
	Adding indexes
	Removing indexes
	Adding and removing foreign keys

	Running Migrations

	Seeding
	Creating a Seeder
	Model Factories
	Creating a model factory
	Using a model factory
	Overriding properties when calling a model factory
	Generating more than one instance with a model factory

	Defining and accessing multiple model factory types

	Query Builder
	Basic Usage of the DB Facade
	Raw SQL
	Raw selects
	Parameter bindings and named bindings
	Raw inserts
	Raw updates
	Raw deletes

	Chaining with the Query Builder
	Constraining methods
	Modifying methods
	Ending/returning methods
	Writing raw queries inside query builder methods with DB::raw
	Joins
	Unions
	Inserts
	Updates
	Deletes
	JSON operations

	Transactions

	Introduction to Eloquent
	Creating and Defining Eloquent Models
	Table name
	Primary key
	Timestamps

	Retrieving Data with Eloquent
	Get one
	Get many
	Chunking responses with chunk()
	Aggregates

	Inserts and Updates with Eloquent
	Inserts
	Updates
	Mass assignment
	firstOrCreate() and firstOrNew()

	Deleting with Eloquent
	Normal deletes
	Soft deletes
	Enabling soft deletes
	Querying with soft deletes
	Restoring soft-deleted entities
	Force-deleting soft-deleted entities

	Scopes
	Local scopes
	Global scopes
	Removing global scopes

	Customizing Field Interactions with Accessors, Mutators, and Attribute Casting
	Accessors
	Mutators
	Attribute casting
	Date mutators

	Eloquent Collections
	Introducing the base collection
	What Eloquent collections add

	Eloquent Serialization
	Returning models directly from route methods
	Hiding attributes from JSON

	Eloquent Relationships
	One to one
	One to many
	Using relationships as query builders
	Selecting only records that have a related item

	Has many through
	Many to many
	Getting data from the pivot table

	Polymorphic
	Many to many polymorphic

	Child Records Updating Parent Record Timestamps
	Eager loading
	Constraining eager loads
	Lazy eager loading

	Eager loading only the count

	Eloquent Events
	Testing
	TL;DR

	9. User Authentication and Authorization
	The User Model and Migration
	Using the auth() Global Helper and the Auth Facade
	The Auth Controllers
	RegisterController
	RegistersUsers trait

	LoginController
	AuthenticatesUsers trait
	ThrottlesLogins trait

	ResetPasswordController
	ForgotPasswordController

	Auth::routes()
	The Auth Scaffold
	“Remember Me”
	Manually Authenticating Users
	Auth Middleware
	Guards
	Changing the Default Guard
	Using Other Guards Without Changing the Default
	Adding a New Guard
	Creating a Custom User Provider
	Custom User Providers for Nonrelational Databases

	Auth Events
	Authorization (ACL) and Roles
	Defining Authorization Rules
	The Gate Facade (and Injecting Gate)
	The Authorize Middleware
	Controller Authorization
	Checking on the User Instance
	Blade Checks
	Intercepting Checks
	Policies
	Generating policies
	Checking policies
	Overriding policies

	Testing
	TL;DR

	10. Requests and Responses
	Laravel’s Request Lifecycle
	Bootstrapping the Application
	Laravel’s kernel

	Service Providers

	The Request Object
	Getting a Request Object in Laravel
	Getting Basic Information About a Request
	Basic user input
	User and request state
	Files

	Persistence

	The Response Object
	Using and Creating Response Objects in Controllers
	Setting headers
	Adding cookies

	Specialized Response Types
	View responses
	Download responses
	File responses
	JSON responses
	Redirect responses
	Custom response macros

	Laravel and Middleware
	An Introduction to Middleware
	Creating Custom Middleware
	Understanding middleware’s handle() method

	Binding Middleware
	Binding global middleware
	Binding route middleware
	Using middleware groups

	Passing Parameters to Middleware

	Testing
	TL;DR

	11. The Container
	A Quick Introduction to Dependency Injection
	Dependency Injection and Laravel
	The app() Global Helper
	How the Container Is Wired
	Binding Classes to the Container
	Binding to a Closure
	Binding to Singletons, Aliases, and Instances
	Binding a Concrete Instance to an Interface
	Contextual Binding

	Constructor Injection
	Method Injection
	Facades and the Container
	How Facades Work

	Service Providers
	Testing
	TL;DR

	12. Testing
	Testing Basics
	Naming Tests
	The Testing Environment
	The Testing Traits
	WithoutMiddleware
	DatabaseMigrations
	DatabaseTransactions

	Application Testing
	TestCase
	“Visiting” Routes
	Custom Application Testing Assertions
	JSON and Non-visit() Application Testing Assertions
	Clicking and Forms
	Jobs and Events
	Authentication and Sessions

	Artisan and Seed
	Mocking
	Mockery
	Mocking Facades

	TL;DR

	13. Writing APIs
	The Basics of REST-Like JSON APIs
	Controller Organization and JSON Returns
	Reading and Sending Headers
	Sending Response Headers in Laravel
	Reading Request Headers in Laravel

	Eloquent Pagination
	Sorting and Filtering
	Sorting Your API Results
	Filtering Your API Results

	Transforming Results
	Writing Your Own Transformer

	Nesting and Relationships
	API Authentication with Laravel Passport
	A Brief Introduction to OAuth 2.0
	Installing Passport
	Passport’s API
	Passport’s Available Grant Types
	Password grant
	Authorization code grant
	Personal access tokens
	Tokens from Laravel session authentication (synchronizer tokens)

	Managing Clients and Tokens with the Passport API and the Vue Components
	The routes
	The Vue components

	Passport Scopes

	Laravel 5.2+ API Token Authentication
	Testing
	TL;DR

	14. Storage and Retrieval
	Local and Cloud File Managers
	Configuring File Access
	Using the Storage Facade
	Adding Additional Flysystem Providers

	Basic File Uploads and Manipulation
	Sessions
	Accessing the Session
	The Methods Available on Session Instances
	Flash Session Storage

	Cache
	Accessing the Cache
	The Methods Available on Cache Instances

	Cookies
	Cookies in Laravel
	Accessing the Cookie Tools
	The Cookie facade
	The cookie() global helper
	Cookies on request and response objects
	Reading cookies from request objects
	Setting cookies on response objects

	Full-Text Search with Laravel Scout
	Installing Scout
	Marking Your Model for Indexing
	Searching Your Index
	Queues and Scout
	Perform Operations Without Indexing
	Manually Trigger Indexing via Code
	Manually Trigger Indexing via the CLI

	Testing
	File Storage
	Uploading fake files
	Returning fake files

	Session
	Cache
	Cookies

	TL;DR

	15. Mail and Notifications
	Mail
	“Classic” Mail
	Basic “Mailable” Mail Usage
	Mail Templates
	Methods Available in build()
	Attachments and Inline Images
	Queues
	queue()
	later()
	Specifying the queue or connection

	Local Development
	The log driver
	Mailtrap.io
	Universal to

	Notifications
	Defining the via() Method for Your Notifiables
	Sending Notifications
	Sending notifications using the Notifiable trait
	Sending notifications with the Notification facade

	Queueing Notifications
	Out-of-the-Box Notification Types
	Email notifications
	Database notifications
	Broadcast notifications
	SMS notifications
	Slack notifications

	Testing
	Mail
	Notifications

	TL;DR

	16. Queues, Jobs, Events, Broadcasting, and the Scheduler
	Queues
	Why Queues?
	Basic Queue Configuration
	Queued Jobs
	Creating a job
	Pushing a job onto a queue
	Customizing the connection
	Customizing the queue
	Customizing the delay

	Running a Queue Worker
	Handling Errors
	Exceptions in handling
	Limiting the number of tries
	Handling failed jobs

	Controlling the Queue
	Queues Supporting Other Functions

	Events
	Firing an Event
	Listening for an Event
	Event subscribers

	Broadcasting Events over WebSockets, and Laravel Echo
	Configuration and Setup
	Broadcasting an Event
	Receiving the Message
	Advanced Broadcasting Tools
	Excluding the current user from broadcast events
	The broadcast service provider
	Binding authorization definitions for WebSocket channels

	Laravel Echo (the JavaScript Side)
	Bringing Echo into your project
	Using Echo for basic event broadcasting
	Private channels and basic authentication
	Presence channels
	Excluding the current user
	Subscribing to notifications with Echo

	Scheduler
	Available Task Types
	Available Time Frames
	Blocking and Overlap
	Handling Task Output
	Task Hooks

	Testing
	TL;DR

	17. Helpers and Collections
	Helpers
	Arrays
	Strings
	Application Paths
	URLs
	Misc

	Collections
	The Basics of Collections
	A Few Methods

	TL;DR

	Glossary
	Index

